Certified Synthesis of Efficient Batch Verifiers

Joseph A. Akinyele*, Gilles Barthe!, Benjamin Grégoire!, Benedikt Schmidt!, and Pierre-Yves Strub!

* Johns Hopkins University & Zeutro LLC, Baltimore, USA
TIMDEA Software Institute, Madrid, Spain
HNRIA Sophia-Antipolis Méditerranée, France

Abstract—Many algorithms admit very efficient batch versions
that compute simultaneously the output of the algorithms on a
set of inputs. Batch algorithms are widely used in cryptography,
especially in the setting of pairing-based computations, where
they deliver significant speed-ups.

AutoBatch is an automated tool that computes highly opti-
mized batch verification algorithms for pairing-based signature
schemes. Thanks to finely tuned heuristics, AutoBatch is able to
rediscover efficient batch verifiers for several signature schemes
of interest, and in some cases to output batch verifiers that
outperform the best known verifiers from the literature. However,
AutoBatch only provides weak guarantees (in the form of a WTgX
proof) of the correctness of the batch algorithms it outputs. In this
paper, we verify the correctness and security of these algorithms
using the EasyCrypt framework. To achieve this goal, we define
a domain-specific language to describe verification algorithms
based on pairings and provide an efficient algorithm for checking
(approximate) observational equivalence between expressions of
this language. By translating the output of AutoBatch to this
language and applying our verification procedure, we obtain
machine-checked correctness proofs of the batch verifiers. More-
over, we formalize notions of security for batch verifiers and we
provide a generic proof in EasyCrypt that batch verifiers satisfy
a security property called screening, provided they are correct
and the original signature is unforgeable against chosen-message
attacks. We apply our techniques to several well-known pairing-
based signature schemes from the literature, and to Groth-Sahai
zero-knowledge proofs.

I. INTRODUCTION

Designing efficient and provably secure cryptographic con-
structions is a central goal in cryptography. While proposing
new constructions is the prevailing route to achieving this goal,
cryptography also has a long history of optimization tech-
niques that improve the efficiency of existing constructions.
Batching is one such technique; informally, a batch version
of an algorithm is another algorithm which runs multiple
instances of the original (non-batch) algorithm on different
inputs. While all algorithms admit a batch version, simply by
iterating the algorithm on all elements of the input set, batch
algorithms can be significantly more efficient than the naive
ones. The efficiency gained by relying on batch algorithms
is particularly critical in scenarios where algorithms must be
executed efficiently under stringent computational resource
constraints. See for instance [59] for a successful application
of batch verification to vehicular sensor networks.

There is a long tradition of developing batch verifiers in
cryptography. One influential work is the one of Bellare, Garay
and Rabin [11], who propose three generic techniques for
building efficient batch verifiers: the random subset test, the

small exponents test, and the bucket test. Later, Cha and Cheon
propose [27] two additional techniques: the sparse exponent
test, and the complex exponent test, based on similar ideas.
When formulated in the setting of an additive group, these
techniques exploit the idea of using randomization to reduce
verification of an arbitrary number of equations to verification
of a single equation on random linear combinations of the
equations. The techniques induce correct batch verifiers in the
sense that: i. whenever the original algorithm accepts, the batch
algorithm accepts; ii. whenever the original algorithm rejects at
least one input, the batch verification algorithm rejects except
with negligible probability.

Pairing-based cryptography is the branch of cryptography
that studies cryptographic constructions based on bilinear
pairings; over the last fifteen years, pairing-based cryptography
has received considerable attention. On the one hand, there
has been significant effort to find efficient pairings based on
elliptic or hyperelliptic curves. On the other hand, pairings
have been used as a building block in numerous cryptographic
constructions. Early instances of such constructions include the
three-party one-round key exchange protocol by Joux [45], the
identity-based encryption scheme by Boneh and Franklin [17],
or the short signatures by Boneh, Lynn, and Shacham [18].
More recent constructions based on pairings include the effi-
cient non-interactive zero-knowledge (NIZK) proofs by Groth
and Sahai [38] or Jutla and Roy [46], as well as the structure-
preserving signatures by Abe, Fuchsbauer, Groth, Haralambiev
and Ohkubo [2].

Pairing-based computations are a particularly interesting
application of batch verification because computing with pair-
ings is very expensive and thus verification of pairing-based
computations can be inefficient. Consequently, there has been
a significant amount of work to adapt generic batching tech-
niques to the bilinear setting and to develop batch verifiers
for existing verification algorithms for pairing-based signature
schemes [18], [25], [58], [60], [61], [21], [33] or NIZK
proofs [35], [14], [24]. This line of work has resulted in very
efficient batch verifiers requiring a constant number of pairings
that is independent of the number of checked signatures.
However, it remains a challenge to find optimal batch verifiers
for pairing-based computations. Indeed, efficient batch verifiers
are typically derived by combining the aforementioned generic
techniques with algebraic reasoning about the underlying
mathematical objects, in this case pairing-based computations.
Since algebraic reasoning on such computations is quite com-
plex, deriving a correct batch verifier is error-prone; moreover,
due to the large search space, manual construction of batch
verifiers might lead to sub-optimal algorithms.

AutoBatch [5] is an automated tool for generating efficient
batch verifiers from high-level descriptions of pairing-based
signature schemes. In particular, the tool takes as input a
Scheme Description Language (SDL) description of a signa-
ture scheme and applies a series of techniques to produce
optimized batch verifiers. Additionally, the tool generates
working implementations of the resulting batch verifiers in
either Python or C++ using Charm [3].

AutoBatch demonstrates by an extensive analysis of al-
gorithms from the literature that it is feasible to synthesize
automatically optimized batch verifiers, and that in some cases
the output verifiers are more efficient than manually crafted
verifiers. More generally, AutoBatch supports the view that
the design and optimization of cryptographic constructions
can greatly benefit from computer-aided tools. However, Au-
toBatch addresses only partially the key concern of deliv-
ering provably secure constructions; indeed, AutoBatch only
generates a I&TEX proof of correctness for the batch verifier,
leaving the generation of a machine-checkable proof as an
open problem for further work.

In this article, we address this issue and provide support
for certifying the correctness and security of batch verifiers
output by AutoBatch. Concretely, we develop a certifying
back-end for AutoBatch; the back-end is based on Easy-
Crypt [10], a framework for the verification of probabilistic
programs. EasyCrypt has been used extensively to verify the
security of cryptographic constructions. In this paper, we show
that EasyCrypt is sufficiently versatile to reason about the
correctness of the optimizations performed by AutoBatch, as
well as about the security of the batch verifiers synthesized by
AutoBatch. The EasyCrypt back-end consists of two main
components: the first component takes as input a verification
algorithm and a batch verifier, and certifies the correctness of
the latter. This component is based on an automated procedure
for checking equality of expressions built from bilinear maps
and group operations. The other component is a generic proof
that a correct batch verifier satisfies a notion of security called
screening (originally introduced in [11]), provided the original
verifier is secure against chosen-message attacks. The resulting
workflow is described in Figure 1.

Moreover, we initiate the extension of our approach to
zero-knowledge proofs for pairing-based statements. In [38],
Groth and Sahai develop an approach to build effi-
cient non-interactive zero-knowledge (NIZK) and witness-
indistinguishable (NIWI) proofs of satisfiability for several
important classes of pairing-based equations. Since their in-
ception, Groth-Sahai proofs have been widely adopted in the
context of pairing-based cryptography, allowing the realization
of many new constructions, including group and ring signa-
tures, voting, anonymous broadcast, anonymous credentials
and verifiable encryption. Later, Blazy et al. [14] show how
batch verification can lead to significant speedups, especially
for instantiations based on the symmetric external Diffie-
Hellman SXDH assumption and the decisional linear DLIN
assumption. We present an extension of our framework that is
able to automatically compute and certify batch Groth-Sahai
proofs of this type.

Contributions

To achieve this goal, we make the following contributions:

Batch
Verifier
(SDL)

SR

aighsg::h Correctness
Verifier (EC) »| Proof (EC)

)
Screening
Proof (EC)

—

Scheme
and Batch
Verifier (PY)

Security _
Proof (EC) >

AutoBatch starts with a full description of a signature scheme in
SDL. AutoBatch then searches for an optimized batch verifier and
produces it in SDL and outputs Python (and/or C++) implementations
for both algorithms. The SDL representations of the scheme and batch
verifier are sent to EasyCrypt, and formally verified automatically.
The user can optionally provide an EasyCrypt proof of unforgeability
of the scheme, from which screening security of the batch verifier is
derived automatically.

Fig. 1. Overall architecture

1) We define a domain-specific language for describing
verification algorithms built from computations in bilinear
groups, equality checks, random sampling, and bounded
loops (modelled using big operators). Our language is
sufficiently expressive to capture most such algorithms
(both batch and non-batch) from the literature.

2) We develop a procedure to reason about equality of de-
terministic expressions of our domain-specific language.
Moreover, we show that the techniques of [5], which
formalize most existing optimization techniques from the
cryptographic literature, can be validated automatically by
our verification procedures. Using eager sampling (which
transforms an arbitrary expression into an equivalent
expression that performs all its samplings upfront and
then makes a deterministic computation), we extend our
procedure to arbitrary expressions.

3) We formalize the Small Exponent Test for prime order
groups. This test is key to combining multiple equations
into a single one, by first randomizing each equation and
then combining them. We also prove the correctness of the
Small Exponent Test for composite order groups whose
order has no small prime factor.

4) We formalize a meta-theorem in EasyCrypt that relates
the so-called screening security of a signature scheme
with the security of a batch scheme obtained using our
transformations. More precisely, we show that if the
original scheme is secure with respect to unforgeability
for chosen message attacks (UF-CMA), then any correct
batch verifier for that scheme is secure against screening
attacks.

5) We combine AutoBatch with EasyCrypt to obtain cer-
tified optimized batch algorithms for signature schemes.
We demonstrate the usefulness of our toolchain by cer-
tifying the examples from AutoBatch. Moreover, we
prove UF-CMA security of the well-known CL signature
scheme from [22] and obtain automatically from the proof

of correctness generated by our tool and the proof of the
meta-theorem a proof of screening security for batch-CL.
6) We extend AutoBatch to output efficient batch verifiers
for Groth-Sahai proofs, and we use EasyCrypt to auto-
matically verify the correctness of the batch verifiers.

II. NOTATION

Following [31], and for the clarity of exposition, we use
additive notation for the groups G1, G2, and Gp. Note however
that the literature on pairing-based cryptography, including the
paper on AutoBatch [5], often uses multiplicative notation for
the source groups. Moreover, we use g;, g2 and gr to denote
the generators of G; and Go and G respectively, and [u]a
for scalar multiplication. We say a pairing is symmetric if
there exists an efficient isomorphism between the two source
groups G; and Go (abstractly, G; = Go), and asymmetric
otherwise. In the remainder of the paper, all propositions have
been proved in EasyCrypt unless stated otherwise.

III. MOTIVATING EXAMPLE: BATCHING CL SIGNATURES
A. Public-key signature schemes

A signature scheme consists of four algorithms
(ParamGen, KGen, Sign, Ver). The setup algorithm ParamGen
is a probabilistic algorithm that takes as input the security
parameter and outputs the mathematical structures for running
the algorithm. Key generation KGen is another probabilistic
algorithm that takes as input the setup and computes the secret
and public keys of a user. Signing Sign is a probabilistic
algorithm that takes as input a message and a secret key
and returns a signed message. Finally, verification Ver is a
(often deterministic) algorithm that takes as input a public
key pk, a message m, and a signed message ms and checks
whether ms is a valid signature of m for the public key pk.
A signature scheme is required to comply with the following
correctness condition, which ensures that signatures generated
correctly are always accepted by the verifier, i.e,

P + ParamGen(1");
(sk, pk) + KGen(P);
o + Sign(sk,m);
b < Ver(pk,m, o)

:b=ok| =1

The CL signature scheme is a pairing-based signature scheme
introduced by Camenisch and Lysyanskaya [22]. It is defined
as follows:

e ParamGen returns a tuple (p, G1, G, Gr, g1, 92, 97, €),
consisting of a prime p, cyclic groups G1, G2 and G of order
p, generators g;, g2 and gr and a polynomial-time bilinear
map e : G; x Go — Gr such that e(g1, g2) = gr and for all
a € Gy, be Gy and u,v € Z, e([u]a, [v]b) = [u-v] e(a,b);

e KGen samples x and y uniformly in Z, and returns as
secret key sk = (z,y) and as public key pk = (X,Y") where
and X = [z]g; and Y = [y]g1;

e Sign takes as input the secret key sk and a message
m € Z,, samples r uniformly in Z; and returns the signature

([r]ga, [rylga, [r(z + may)lga) € Ga x G x Go;

e Ver takes as input the public key pk, a message m € Z;
and a signed message (a,b,c) € (G2 \ {0}) x G2 x Gy and

verifies the following equations:

e(Y,a) =e(g1,b) e(X,a) + [m]e(X,b) = e(g1,¢)

B. Unforgeability against chosen-message attacks

The standard notion of security for public-key signature
schemes is existential unforgeability against chosen-message
attacks (UF-CMA), which ensures an adversary has small prob-
ability of forging a valid signature for a message of its choice.
Formally, the advantage Advyr-cma(s)(A) of an adversary
against existential unforgeability of chosen-message attacks
for a signature scheme S = (ParamGen, KGen, Sign, Ver) is
defined as

P + ParamGen(17);
(sk,pk) + KGen(P);
(m, 0) + A5 (pk);
b < Ver(pk,m, o)

Pr :b=okAm¢L

where L denotes the list of signature queries performed by the
adversary A. Moreover, the signature scheme S is (¢, q,€)-
secure against existential unforgeability of chosen-message
attacks, or (t, ¢, €) UF-CMA-secure for short, if for adversary
A executing in time at most ¢t and performing at most ¢
requests to the signing oracle,

Advye-cmacs)(A) < e

The CL signature scheme can be proved UF-CMA secure
under the LRSW assumption [50]. The advantage Adv|grsw (B)
of an adversary 3 against the LRSW assumption is defined as

P + ParamGen(1");
Pr| | (sk,pk) < KGen(P)

. EqsAm ¢ LA
(mya,b,c) Bo(pk);

aZ0Am#0

where Eqs is defined as b = [yla A ¢ = [x + mayla, L is
the list of queries to the oracle O, and the oracle O takes
as input m € Z,, samples r uniformly in G and returns
(r; [ylr, [& + maylr) € Ga x Gy x Go.

Proposition III.1 (Unforgeability of CL signatures) For every
adversary A against UFCMA-security of CL signatures that
executes in time ¢ and makes at most g queries to the signing
oracle, one can construct an adversary 53 against the LRSW
assumption that executes in time O(t) and makes at most ¢
queries to the oracle O, such that

Advyr-cmacor)(A) < Advirsw(B)

Sketch: The reduction is straightforward: the adversary
B forwards signatures queries to the oracle O and returns the
output of A. We must show that if the output of A passes
verification, then it satisfies EEqs, which can be done directly
by algebraic calculations.]

Hence UF-CMA security of CL signatures follows from the
hardness of the LRSW assumption.

C. Batch verification

A batch verifier for a signature scheme is an algorithm
that verifies simultaneously multiple signatures, and satisfies
the following two properties: if all signatures in a submit-
ted batch are valid, then the batch verifier accepts, and;
if some signature in the submitted batch is invalid, then
it rejects with overwhelming probability. Formally, an algo-
rithm BVer is an e-batch verifier for a signature scheme

(ParamGen, KGen, Sign, Ver) iff for every w = (pk,m,0):
0 < Pr[b +BVer(w): b = ok]—Pr[b + Ver’(w): b = ok] < ¢

where Ver? iteratively applies the verification algorithm to all
triples w[i]. This definition is inspired from [21]; however,
our definition also considers the case where the verification
algorithm is probabilistic. In this case, our definition ensures
that the rejection probability of BVer is upper-bounded by
the rejection probability of Ver’, i.e., the batch verifier does
not reject more often than the iterated verification algorithm.
Moreover, note that our definition considers the case of batch
verification for multiple signers; the case of single signers is

similar, except that w is now of the form (pk, (m,o)). Both
definitions are instances of a more general notion of batch
verifier that applies to arbitrary algorithms returning a boolean
value; see Section IV.

A simple-minded approach to obtain efficient batch veri-
fiers is to combine all verification equations into a single one
using the group laws. Following this approach, a batch verifier
for a set of message and signature pairs (m;, (a;, bi, ¢i))1<i<n
from a single user with public key (X, Y") would simply check:

Y. eVia)= Y elgib)

1<i<n 1<i<n
> (X a) + [mile(X,b:) = Y elgr,c))
1<i<n 1<i<n

However, such a verifier is incorrect; indeed, it is immediate
for an adversary to produce a batch that is accepted by this
algorithm but contains invalid signatures. This can be avoided
by sampling values 6;, 8! uniformly over (0...2¢ —1) and by
verifying:

Y [Bile(Y,as) + [5](e(X, a;) + [mile(X, b)) =

1<i<n

Z [0:]e(g1,bi) + [07]e(g1. i)

1<i<n

This so-called Small Exponent Test has a small probability
to accept a bad signature, precisely 27¢; thus, the choice of / is
a trade-off between security and efficiency; a reasonable choice
for ¢ is 80, so that the error is 2780, The correctness of the
Small Exponent Test is captured by the following proposition.

Proposition III.2 (Small Exponent Test) Let p be a prime
and let a;,b; € Z, for i < n. Consider the expressions
5 = icplwila; and t = 37, [x;]b;, where x; are chosen
uniformly at random over (O...2Z’1), where 2¢ < p. Then
the probability that s = ¢ with a; # b; for some 7 is upper
bounded by 27¢.

For the purpose of CL signatures, we only use the test for
prime order groups. As noted by [11], primality is important
for the validity of the test; in general, the test fails for
arbitrary groups. However, we show in Section IV-C that the
Small Exponent Test remains valid for an important class of
composite order groups.

The next step to obtain an efficient batch verifier is to
perform equational reasoning in order to transform the above
equations into equations with a smaller number of calls to
the bilinear map—these computations dominate the runtime,
and thus the main purpose of the optimization phases is
to minimize their usage. AutoBatch identifies a series of
transformations and implements heuristics that lead to more
efficient algorithms. Figure 2 shows an excerpt of the sequence
of transformations performed by AutoBatch to obtain an
efficient batch verifier.

The next step is to compile into EasyCrypt the signature
scheme and the batch verifier output by AutoBatch. The Easy-
Crypt file output by the translation contains various typing
declarations and axioms that capture the expected properties of
the parameters. The translation is based on a library for bilinear
maps. Then, the correctness of the batch verifier is proved
automatically as follows. First, we build the naive batch verifier
from the original equation, and generate a proof of correctness
in EasyCrypt; the latter is obtained by instantiating a generic
proof, taking advantage of the (newly developed) module
system of EasyCrypt. Then, we apply the Small Exponent
Test to the original equation; the Small Exponent Test is proved
generically in EasyCrypt, and thus this step is justified simply
by instantiation. Then, one invokes an automated procedure
that proves the equivalence between the expression obtained
by applying the Small Exponent Lemma, and the batch verifier
output by AutoBatch. Pleasingly, the automated procedure is
able to automatically prove the equivalence, without additional
help.

D. Screening property of batch verifiers

Bellare, Garay and Rabin [11] introduce an alternative
notion to batch verification, called screening, which can be
achieved more efficiently, and is sometimes sufficient in prac-
tice. The advantage AdVscreen(s,Bver) O an adversary A against
screening security of a batch verifier BVer for a signature
scheme S = (ParamGen, KGen, Sign, Ver) is defined as

p < ParamGen(17);
(Sk‘(),pk()) — KGen(p);

(i, pk,m, a) + A€ (pko);
b < BVer(pk,m,0);

r : b=ok A Forg(i)

where Forg(i) denotes pk[i] = pko A mi[i] ¢ L and L is the
list of signature queries performed by the adversary A.

One can relate unforgeability of the original signature
scheme and screening security of the batch verifier scheme
as follows.

Proposition ITL.3 Let (ParamGen, KGen, Sign, Ver) be a sig-
nature scheme that is (¢, g, ¢)-unforgeable against chosen-
message attacks. If the algorithm BVer is a ¢-batch ver-
ifier for (ParamGen, KGen,Sign,Ver), then the advantage

We begin with the original verification equation.
e(Y,a) = e(g,b) and e(X,a) + [m]e(X,b) = e(g,c)

Step 1: Consolidate the verification equations (tech. 0a), and apply the
small exponents test as follows: For each of the i = 1 to n signatures,
choose random 6;,d2 € [1, 2 — 1] and compute for each equation:

[01]e(g, b) + [—d1]e(Y, a) = [d2]e(X, a) + [m - d2]e(X, b) + [—d2]e(g, c)

Step 2: Combine 7 signatures (tech. 1), move the scalar(s) inside pairing (tech. 2):
n n

Ze 9, [6i1 di1]ai) Ze +e(X, [mi - 6i2]bi) + e(g, [~ di2]ci)
i=1 i=1

Step 3: Merge pairings with common first or second argument (tech. 3b):

e(g, [0i,1]bi + [8i2]ci) + e

M:

n
—di1]ai) = Ze J[6i,2]ai) + e(X, [m - 8:,2]bsi)
i=1

i=1

Step 4: Merge pairings with common first or second argument (tech. 3b):

n n

S elg, [8i]bi + [8: 2)ci) + e(Y; [=8ialar) = S e(X, [8iolai + [mi - 8i2]b:)

i=1 i=1
Step 5: Move sum inside pairings to reduce 7 pairings to 1 (tech. 3a):
77

(X, [di2lai + [mi - 8i2]bi)

i=1

D elg, [8.41b: + [8:.2]ei) + (Y, [=i1]as) =

Step 6: Distribute sum (tech. 5):

n n

n
Ze g, [0i.1]bi + [di2]ci) + Ze(y [di1]a:) = e(X, Z 0i,2]ai + [mi - 6i,2]bi)
i=1 i=1

Step 7: Move sum inside pairings to reduce 7 pairings to 1 (tech. 3a):

Z[aﬂb + [6i2)ci +e‘/2 Silai)

n

= e(X, Y [diolai + [mi - 8i00b:)

i=1

Fig. 2. Selected steps of AutoBatch trace for CL-signatures

AdVscreen(s,Bver)y Of an adversary A executing in time ¢ and
making at most g requests to Sign is upper bounded by €+ ¢€’.

By instantiating the proposition to CL signatures and ap-
plying the (interactively developed) proof of unforgeability and
the (automatically generated) proof of correctness described
above, one obtains an EasyCrypt proof of screening security
for CL signatures.

IV. EQUIVALENCE OF PAIRING-BASED COMPUTATIONS

This section introduces a domain-specific language for
pairing-based computations, provides transformations that pre-
serve the semantics of expressions, except for some small
probability, and finally provides a procedure for the approx-
imate equivalence of two expressions. Our results in the this
section hold for prime-order and composite-order groups, but
our EasyCrypt development is restricted to the prime-order
case.

A. Expression language

Expressions of our language are built from group oper-
ations, bilinear pairings, boolean operators, comparison, uni-
form sampling over finite sets, and let definitions. The syntax
also features big operators for the group law and boolean
conjunction. Formally, the set of expressions is defined by
the grammar of Fig. 3. As usual, the big operators and the
let operators are binding; we let FV(e) denote the set of
free variables of an expression e. Moreover, we say that an
expression e is deterministic, written det(e), if e does not
contain any random sampling.

e = z variable
1 one
0 neutral element
Gk group generator
—e group inverse
ete group law
e-e multiplication in Z,
[ele scalar multiplication
e(e, e) pairing
e=e equality test
eNe conjunction
Yicme® big operator group law
Ni< me€ big operator conjunction
€; projection
let <~ Uine random sampling
let z < eine let binding

where k € {1,2,T}, m ranges over size variables, i
ranges over indexes, z ranges over variables, and U is
drawn from the syntax:

U = 7Z, integers modulo n
| Zst integers modulo n of size < /¢
| Gy first source group
| Go second source group
| Gr target group
| U™ product type
Fig. 3. Expression language for pairing-based computations

As an illustration of the syntax, the naive batch verifier
for CL signatures with input ((X;,Y;), my, (ai,bi, ¢;))icn is
defined as

/\ (e(}/;, ai)ie(gl, bi)/\e(Xi,ai) + [m

i<n

iJe(Xi, bi) =e(g1,¢:))

We equip the language with a simple type system that
isolates meaningful expressions; in addition to the types given
in Fig. 3, we also consider the type B of booleans. Typing
judgments are of the form

|z:U2 U ...Fe:V
where 41,%5,... are indices, mqy,mo,... are size variables,

x,7’ ... are variables, e is an expression, and U,U’,...,V
are types. Typing rules are standard, for instance:

11 < Mi,io < Mao...

i1 <my,... 0 <mg|ax:Uz U ...Fe: VM

11 <Mmi,..., :U’}—eiS:V
assuming that s € {1...k}. Operators are overloaded in the
expected way; for instance, 4+ denotes addition in Gy, Gs, G,

and Z,,. In the sequel, we use a, b, c for group elements and
u, v, w for elements of Z,, and ¢, for booleans.

ip<my|xz: U

Well-typed expressions are given a probabilistic interpre-
tation as follows. In this paper, we only consider distributions
over finite sets, so it is sufficient to view a distribution over X
as a function p : X — [0, 1] such that v pu(z) = 1. In the
sequel, we let let 4 in p/ denote the standard bind operator
for probability distributions, i.e.

let yuin M = Xy. Y p(z) M(x)(y)
reX

The interpretation is defined by the following steps; we con-
sider both the case of prime order groups and the case of
composite order groups. First, one interprets size variables and
n and ¢ as natural numbers. We require that n is interpreted as
a prime number or as the product of large primes, i.e. of the
form pq - - - pi, where the p; are large primes. We also require
that 2¢ is smaller than n in the first case and smaller than
all p; in the second case. Then, we define a set-theoretical
interpretation for types (we let [U] denote the interpretation
of U) such that Gy, G, Gy are cyclic groups of order n,
and there exists a bilinear pairing [e] : [G1] x [G2] — [Gr].
Finally, we interpret expressions of type U as distributions over
[U]- The interpretation is defined relative to a valuation p that
maps variables of type U to elements of [U]. The interpretation
is standard, for instance:

e [e1 + €], is defined by the clause
let 2 <= [e1],;y < [ea], in z +y
e [e1 = es], is defined by the clause
let 2 < [e1],;y <= [ea], inz =y
o [let r S Uin €], is defined by the clause
let z < Uy in [e] =)

where Uy denotes the uniform distribution over [U] (which

is a finite set). Note that the interpretation of [let <> U in €],
can be written in the equivalent form

\u #{:C € [[U]] | [[eﬂp(r::ac) = u}
' #UI

where #S5 denotes the cardinality of the finite set .S.

In order to illustrate the semantics of programs, consider
the simple example of the closed boolean expression

(let 7 <& Zpinr) =1

We have
[(letr <~ Z,inr)=1] = letz< Uy, jinaz=1
_ 1
iﬂzn]]
[n]

B. Batch verification

We extend to arbitrary boolean-valued expressions the
notion of batch verifier introduced in Section III. Let e and €’
be two boolean-valued expressions. Assume FV(e) = XU{xz}
and FV(e') = X U{y} where x : U and y : U™. We say that
e’ is an e-correct batch expression for e w.r.t. the mapping
T~ y, written F e = ¢’ iff for every interpretation p
and tuple of values v,

0 < Pr{[epy=n) =t = Pr[A [elpams,) =t < e
i<n
To capture the batch security definition for signatures from
Section III-C, we can use the mapping w — w for variables
w : U and w : U™ where U denotes the type of triples of
public keys, messages, and signatures. To fix the public key,
we can remove the public key from the type U and use a
shared free variable for the public key in both expressions.

In the remainder of the section, we derive valid batch
verifiers for algorithms that operate on prime order groups
or composite order groups whose order has no small prime
factors. We proceed in two steps; first, we apply the Small
Exponent Test to the original verifier; then, we perform
semantics-preserving transformations.

C. Small Exponent Test for composite order groups

We now formulate a more general Small Exponent Test
that applies to groups whose order has no small prime factors.

Proposition IV.1 (Small Exponent Test) Let n = py---px
denote the group order and let a;, b; € Z,, for © < m. Consider
the expressions s = ., [x;Ja; and t =}, _, [x;]b;, where
x; are chosen uniformly at random over (1...2%). Then the
probability that s = ¢ with a; # b; for some i is upper bounded
by 1/p+2~¢ where p = min{ps, ..., px}. In the common case
where 2! < p, the probability is upper bounded by 2.

Proof sketch: We first consider the prime-order case
for clarity. If s = ¢t with a; # b;, then there is a c¢ that is
independent of x; such that x; (a; —b;) = ¢. Since a; —b; # 0
in Zj, we can divide ¢ by a; — b; in Z, and conclude that the
probability is equal to 27 since z; is sampled independently
from ¢/(a; — b;).

In the composite case, it is possible that a; — b; # 0 in
Zy, but a; — b; = 0 modulo some prime factor p of n. Hence
a; — b; is not invertible in Z, and the reasoning from the
prime-order case is not directly applicable. Nevertheless, there
must be some other prime factor p’ of n such that a; — b; #
0 modulo p’ and therefore invertible in Z,. Hence, we can
reduce both sides of the equation modulo p’ and continue as
in the prime order case. Concretely, there is some value d that
is independent of z; such that z; mod p’ = d. If 2! < p/
then z; mod p’ = z is still uniform in 2' and we obtain the
bound 27!, Otherwise, the maximum probability weight in the
distribution defined by sampling uniformly from 1,...,2¢ and
reducing modulo p’ is upper-bounded by 27 + 1/p'. [|

Note that for the case of k£ = 2, Blazy et al. [14] obtain the
bound max{p;,p2} 27" which requires 2 to be significantly
larger than the prime factors of the group order.

Given a boolean-valued expression e, we write

= SmallBxps(€) o/ if ¢/ is obtained from e by applying
the small exponent step to check e{y;/x} for all valid indexes
of y.

D. Equational reasoning

Fig. 4 presents a set of axioms to derive valid equalities in
all interpretations. One can derive from these axioms further
equations using the standard rules of equational logic: reflex-
ivity, symmetry, transitivity, congruence, and substitution.

Proposition IV.2 If ¢ = ¢’ is derivable from axioms using
equational rules, then F e = ¢, i.e. for all interpretations and
valuations p, [e], and [e’], denote the same distributions.

One key step to verify automatically the batch verifiers
of AutoBatch is to be able to check efficiently whether two

expressions are provably equivalent using these rules. Most
techniques used by AutoBatch, to the notable exception of
the Small Exponent Test which is addressed below, can be
justified in this equational setting. In many cases, such as
moving scalars inside pairings (Technique 2 of [5]), moving
sums inside pairings (Technique 3 of [5]), or distribute sums
(Technique 5 of [5]), the technique is a simple application of
our rules. A more interesting example is Technique 4 of [5],
which is used to optimize the Waters Hash, and consists in

replacing
> elai, > [uiylby)

i<m j<m/’

> e > luiglai b;)

j<m’ i<m

by

to reduce the required pairing computations if m' is less
than m. This step can be justified as follows; first, move the
big sum out of the pairing in the first expression, then move
the scalar out of the pairing. One obtains an expression

DY fuigle(as by)

i<m j<m’

By performing the same steps on the second expression, one
obtains an expression

>0 luisle(ai, by)

j<m/ i<m

The two expressions are provably equivalent using the last rule
for Abelian groups; since all steps preserve equality, the two
original expressions are equivalent.

E. Correctness of batch verifiers

The correctness of batch verifiers is a direct consequence
of the previous results.

Proposition TV.3 If £ ¢ =5 ixps(?)
1

272
Fe=iy, €.

e and F ¢ = ¢€” then

F. Implementation in EasyCrypt

We have implemented an automated procedure to prove the
correctness of batch verifiers in EasyCrypt. Given a boolean
expression ey and a candidate batch expression e; for eg, we
first build the naive batch verifier for ey and apply the Small
Exponent Test to obtain a next expression es. Our goal is then
to prove that e; = es.

The first step is to normalize the equation by first pulling at
the top all random samplings and then reducing all determin-
istic let bindings. This leaves us with a sequence of random
samplings followed by an equation of the form ej = e,
where the e}’s do not contain any (deterministic or random)
let binding. We are left to decide the validity of e} = e}.

We first inject the equation in Z, by applying the dis-
crete logarithm, reducing the problem to log(e}) = log(e}).
Then, we use the EasyCrypt rewrite engine to normalize
the log(e})’s. During this step we apply morphism equalities
and distribution laws, and we push big operators, log and

(scalar) multiplication to the leaves of the log(e})’s. Besides
the standard equalities of Figure 4, log obeys the common
group morphism equalities augmented by

Ve, es. log(e(er, e2)) = log(e1) + log(es)

This last property is crucial for reducing an equality in the
target group into an equality in the ring of scalars. Eventually,
we obtain an equation of the form

€1+"'+6ni6n+1+"'en+k

where each e; is a nested sum of big operators and each
summand is a product, i.e. is of the form

§ 2 " " "
61'62"‘en

J1<ki Js<ks

We then reorder top-level big sums of the e, 1,...,en4%’s.
This reordering is again certified by the EasyCrypt rewrite
engine.

We decide the latter equality by using a mixture of a free
ring expression simplifier — part of EasyCrypt and that has
been obtained by extraction from a certified Coq program —
and congruence. Starting from a possibly impure ring expres-
sion (i.e. containing symbols outside of the ring theory — at
this stage, big operators are no more considered as part of
the ring signature), we gather the maximal impure subterms.
We then abstract all these impure terms by fresh variables,
using the same variable for subterms that can be (recursively)
equated by the procedure. The obtained expression is thus
a pure ring expression that can be normalized by the core
EasyCrypt ring simplifier.

In turn, terms headed by a non-ring symbol are equated
by normalizing them and checking for syntactical equality.
Normalizing such a term amounts to normalize all its subterms
headed by a ring symbol, using the procedure just described
in the previous paragraph.

Finally, the latter equation is accepted if the normalization
of eg +---+e, and e,4+1 + -+ + e,41 leads to the same
term. In that case, considering that all the equations of Figure 4
extended by the ones related to log have been formally verified
in EasyCrypt, the proof of correctness of the batch verifier
only relies on the core rewrite engine of EasyCrypt and its
certified ring normalizer.

V. APPLICATIONS TO BATCH SIGNATURE VERIFICATION

To measure the effectiveness of our approach, we evaluate
our techniques on several existing signature schemes from the
literature. More precisely, we verified with EasyCrypt most
of the batch verifiers produced by AutoBatch in [5]. As a
result, our techniques extend to several signature types in the
literature including identity-based signatures, group signatures,
and ring signatures.

In Figure 5, we show all the batch verifiers output by
AutoBatch certified by EasyCrypt. Additionally, we verified
the Waters09 [57] batch result which is known to include a
negligible correctness error in the individual verification. As
discussed in the extended work on AutoBatch [6], it was an
open question whether the batch verification security defini-
tion can be met by such schemes. EasyCrypt handles such

Abelian group (+,—,0) for G; and Z,:

a+(b+ec) = (a+b)+c
a+b = b+a
a+(—a) = 0 ifdet(a)
a+0 = a
Ylatb) = (Doa)+ (Db
<m <m <m
2.0 = > (30
<m j<m/’ j<m’ i<m
Commutative monoid (-, 1) in Z,,
u-(v-w) = (u-v) -w
u-v = v-eu
u-1 = u

Logical rules:

N (@ nv)

1l
>
&

>
>
=

<m <m <m
ANCA® = AN
<m j<m/ j<m’ i<m
/\a = a ifdet(az)andi¢ FV(a)
la<7\l a = a if det(a)
a=b = a-b=0
0=0Au = u

Let binding:
let x < eqin eg

ea{er/x} if det(eq)

Distributivity in Z,,:

Scalar multiplication:

[ul[v]le = [u-vle
e = ¢

[u+vle = [ula+ [v]a
[ula+[ulb = [u](a+0)

[Z ula = Z[u]a if i ¢ FV(a)
[u] ‘ a) = Z [ula if i ¢ FV(u)

Bilinear map:

e(a+b,c) = ela,c)+eldc)
e(a,b+c) = e(a,b)+ea,c
e([alb,c)) = lal(e(b,c))
e(a,[ble)) = [bl(e(a,c))
Z e(a,b) = e(z a,b) if i ¢ FV(b)
Z e(a,b) = e(a, Z b) if i ¢ FV(a)

Sampling:
/\(Ietr<—$Uin a) = Ietr(ﬁUmin(/\ a{rp/r})
i<m <m
Z(Ietr<—$ Uina) = letr< U™in (Z a{rp/r})

u-(v+w) =

U(ZU) =

<m <m

<m <m

<m <m

Fig. 4. [Equational axioms

schemes, using our generalized definition, and certified this
result from AutoBatch. We also test a variant of Waters09 [54]
adapted by Abe et al. [1]. AutoBatch generated a batch verifier
that reduces verification to 11 pairings total from 12n pairings
in individual verification (where n = number of signatures).
This result was also certified by EasyCrypt and presented in
Figure 5.

VI. APPLICATIONS TO NIZK PROOFS

Zero-knowledge proofs are two-party cryptographic pro-
tocols in which a prover convinces a verifier of the validity
of a statement, but does not provide the verifier any further
information beyond this; such proofs can be used in particular
to prove knowledge of a value that satisfies a given prop-
erty, without revealing anything about this value—except for
its existence and knowledge by the prover. More precisely,
the properties of zero-knowledge protocols are captured by
three notions: soundness, completeness, and zero-knowledge
(there are in fact many variants of these notions). Informally,
soundness ensures that a cheating prover cannot convince
the verifier; completeness ensures that an honest prover with

knowledge of a witness can always convince the verifier; zero
knowledge ensures that the verifier does not learn anything
from the proof, except for its validity. We refer to the liter-
ature on zero-knowledge proofs or to standard textbooks on
cryptography for formal definitions. A related notion is wit-
ness indistinguishability. In many instances of zero-knowledge
protocols, the prover uses a witness to prove the validity of the
statement. Witness indistinguishability ensures that the proof
does not reveal to the verifier which witness was used by the
prover.

Zero-knowledge and witness-indistinguishable proofs were
introduced around twenty-five years ago in landmarks arti-
cles, respectively by Goldwasser, Micali and Rackoff [37]
and by Feige and Shamir [32] (see [36] for a survey).
These proofs are useful for numerous applications, including
anonymous authentication, blind signatures, electronic cash,
and electronic voting. However, for practical purposes, it is
generally important that zero-knowledge proofs are efficient,
non-interactive protocols. The study of non-interactive zero-
knowledge proofs was initiated by Blum, Feldman and Mi-
cali [15] shortly after the introduction of zero-knowledge

Scheme Batch Verification Equation output by AutoBatch

Signatures
BLS [18] (ss) e3>, [6:]hispk) =e(>01L [&]sigi,g)
CHP [21] (same time period) e(X0 [0i]sigi, g) = e(T [6:)pks) + e(h, >0 [b; - 6i]pk;)
HW [42] (ss) (Z 8o, g) = [M 6]U+[TGV [6D
+e(Xoi [lg(w) - 51]0’21, w) +e(} ;i 1[%'5@]0’%&2)4-6(i—1l0i]o2i,)
WatersQ09 [57] (ss) e([blgr, Y0y [si - 6iloin) +e((b-ailgr, i [siq - 8ioi2)
+e(lai]gn, 327 [si1 - di]oiz) +e([b - aslgn, 327 [si,2 - diloia)
+e(g1%2, >0 1 [si2 - dilois) = e(D301 1 [6; - sialoie. 1)
+e(3oi 1 [0i - siloie, T2) + (3oL 1[51--51- 1loi,7, [b]m1)
+e(3°1,[6i - si2loiq, [b]m2) + e 1[(5 c—ti + 6, 6 - tagic - ti)]oi7, w)
+e(37_ 10 6 - M, - tilos 7z, u) + e300 [0 - 6; - ti)oiz, h)
+e(gr, 2ol [~ti - 0; - 5]0LK)+[¢:15z’72'5i}A

Waters09 variant [1, §6.4] (ss) e(> .. [61» 2o, 4,R) +e(d>°7,10s, 2]01 5. [D)R) + D1, 8:2] Po
+e(Xi1[diz2loi, [blg) e(Doim1[—0i2]oi 2, [b- alg2)
+e(Xoiq[—di2lois, [alg2) + (Z 1[=0i1 - miloi s, Uz)

(Z [11]‘71 5,H) +6(91,Z, 1[5i,1]0i,0)

= e(Ur, [Yo0, mi - 6] B + Y0, —mi - 6;,4] F3)

(an[zz L mi - =0 3)Us) + e(Fi, 327 mi - 6;.4]Us)

CL [22] (ss) e(g, iy [0i1]bi + [0i2)es) +e(Y, D00 [di1lai)

=e(X, >0 [2]a; + [m; - 8;,2]b;)

ID-based Signatures

Hess [41] e(X21116i1524, 92) = (X011 [ai - 0ilpki, Ppun) + Y71 [0:]51;
ChCh [25] e(Y 071 [0i)S2:, g2) = e(3071 [0:)(S1; + [ailpk), Pous)
Waters05 [56] e300 1105514, 92) + e(3o71[6:] 524, uh)

+Zj=1 e(Doi1[0i - KjilSa; + [0i - mj] S34, 1)
+e(3071[0:] 854, uy) = X7, 6i] B
Group, Ring, ID-based Ring Sigs & Groth-Sahai NIZK

BBS [16] e((XCL 1[5m 03| T 3+ [(—8iy1 — Siy2) - 0ilh + [—ci - 0i]g1), g2)
+e((Xis 1(Si,a = Si,8) < Oilh + 301 i - 6i]Tis), w) = 320, [0i] Ris
Boyen [20] (same ring) Zly L (X [8:]Sy., Ay) 4 e [my.i - 6:)Sy.i, By)
+e(dL 1[@/, 0:)Sy.i,Cy) = X1 [6:]1D
CYH [28] e(Xiy Sy 193] (g + [y ilpky i), P) = (X1, [61)S:, 9)

Groth-Sahai NIZK [14, §5.1] dohye([ri] 2o e glens + [rea] (A + 2000 [ai jleayi), da)
+ 20 ellre] 20 [aiglen + [ra2] (A + 220 [aijlea,i), da)
+ 3 e([r2len + [ra2]ea,i, Bi)
=e([ri,1Jur + [roa]ur 2, m11) +e([rii]us + [r21]us 2, m21)
+e([r1,1]01,1 + [r2,1]61,2,v1.1) +e([r1,1]02,1 + [r2,1]02,2,v2.1)
+e([ri2]ui1 + [ra2ur,e, m12) +e([ri2lusi + [r2,2)us 2, T2 2)

[
+e([r1,2]01,1 + [r2,2]01,2,v1,2) +e([r1,2]021 + [r2,2]02,.2,v2,2) +[r22]T

s$s = same signer

Fig. 5. These are the final batch verification equations output by AutoBatch and verified by EasyCrypt. Due to space, we do not include the full schemes
or further describe the elements of the signature or our shorthand for them, such as setting h = H (M) in BLS. We briefly mention the Waters09 variant and
Waters05. Py represents the precomputed pairing e(g1°, gg<a‘b)/). Similarly, for Waters05, B = e(g1, g2).

proofs, but it has proved remarkably difficult to achieve
efficient non-interactive zero-knowledge (NIZK) and and non-
interactive witness-indistinguishable (NIWI) proofs for a gen-
eral class of statements.

In 2008, Groth and Sahai [38] developed new techniques
that allow to build efficient NIZK and NIWI proofs for proving
the satisfiability of pairing-based statements. Statements are of
one of the following forms, where x; and y; are the parameters
of the statements (and the other constituents are known public
values):

e equations in the target group (i.e., pairing-product equa-

tions):
> e(anw)+ Y ey b)Y > [uijle(wiy) =c
i<m j<m/’ i<m j<m/’

where Ui € Lo, a;, Y5 € G, bj,.l?i € Gq and ¢ € Grp;

e cquations in the first source group (i.e., multi-scalar
multiplication equations), the case of the second source
group is dual:

D olwmlai+ > [odby+ > D [wigylb=c

i<m j<m/’ i<m j<m/’

where U5, Ti,Yj,V5 € Zo,, and a;, bi, ce Gy,
e cquations in Z, (i.e. quadratic equations):

inui—k Z ijj-i-Z Z TiYj Ui =W

<m j<m/’ i<m j<m/
where u; j, Ti, Yj, Vj, W € L.

They also provide three instantiations of their methods. The
first instantiation is in the symmetric setting for composite
order groups where the order is a RSA modulus, i.e. the
product of two distinct primes, and is based on the subgroup
decision SD assumption. The second instantiation is in the
asymmetric setting for prime order groups and is based on
the SXDH assumption. Finally, the third instantiation is in the
symmetric setting for prime order groups and is based on the
DLIN assumption. For each case, one obtains a set of equations
to verify.

In a follow-up work, Blazy et al. [14] apply tools from
batch verification to improve the efficiency of checking NIZK
and NIWI proofs for the satisfiability of the aforementioned
statements. Their primary focus is on SXDH and DLIN since
the instantiation based the subgroup decision assumption is the
least practical. We present an extension of our framework that
is able to automatically compute and certify batch Groth-Sahai
proofs in the SXDH instantiation.

First, we apply our framework to the problem of batching
pairing-product equations presented in Section 5.1 of Blazy
et al. [14]. Here, AutoBatch automatically computes the
batch verifier shown in Figure 5 which is equivalent to the
batch verifier that Blazy et al. obtain manually. We then use
our EasyCrypt backend to confirm the correctness of the
computed batch verifier.

Afterwards, we use our EasyCrypt backend to verify the
correctness of the batch verifier for multi-scalar equations
presented in Section 5.2 of Blazy et al. [14]. After applying
the Small Exponent Test to the naive batch verifier, EasyCrypt
fails to prove its equivalence to the batch verifier proposed by

Blazy. Looking more carefully at their definition, we find an
error in the right-hand side of the equation, the term

e

([r1,1]601 + [r2,1]02,v1.1) + e([r2,1]61 + [r2,2]02,v1,2)+
e(
(
(

+ (]
ri,2)uz1 + [r22]uz2, m,2) + e([@]um + [r2,2]uz,2, m2,2)+

[r1,
[ri1]uig + [re,1]ut,e, m1,1) riajuz,a + [realuz,e, m2,1)+
[

€

e(Th, [r2,1]vz,1 + [r2,2](g2 + v2,2)
should be

e

([r1,1]01 + [r2,1]02, v1,1) + e([r1,2]01 + [r2,2]02,v1,2)+
e(
(
(

[r1,
[ria]ur,n + [re]ur,e, m,1) + e([r1]ue1 + [re]us,2, m2,1)+
e([ry,

ri2lug1 + [re2lug,2, m12) + e([r1,2]uz,1 + [r2,2]us,2, m2,2)+

e(T1,[r2,1]v2,1 + [r2,2](g2 + v2,2).

In other words, the (underlined) coefficients of #; in the second
pairing and of wus ; in the sixth pairing should be r; » instead
of ro ;. While the errors are certainly typos, it shows the
importance of having computer-aided methods to generate and
validate equations of this sort.

VII. RELATED WORK
A. Batch verification

Batch Verification has a long history spanning over two
decades. Fiat introduced the notion of batching for a variant
of RSA [34] in 1989, which focused on batching modular
exponentiations. Naccache et al. [52] presented an interac-
tive verifier for DSA that was later broken by Lim and
Lee [49] in 1994. Laih er al. [48] proposed batch verifiers
for DSA/RSA signatures, but the RSA batch verifier was
later broken by Boyd and Pavlovski [19]. Additional batch
verification techniques were proposed for RSA and DSA by
others [39], [40], but sadly they were trivially broken [19],
[43], [44]. As indicated before, Bellare et al. [11] proposed
three generic methods in 1998 for securely batching modular
exponentiations, one of which is the small exponents test.

Several subsequent batch verification proposals [25], [58],
[60], [61] extended these methods to support batching pairings,
but most of them were found to be flawed. The issues include
in some cases insufficient or absent proof of correctness,
incorrect application of the small exponents test or invalid
assumptions on the algebraic structure of certain signature
elements. See [23], [55] for more details.

More recently, Ferrera et al. [33] demonstrate several gen-
eral techniques for securely batching pairing-based signatures
and show several batch constructions from the literature (e.g.
group and ring-signatures, etc). Akinyele et al. [5] further build
on this work in AutoBatch by automating the application of
the batching techniques in addition to automating the search
for an optimized batch verifier. The tool proves effective in
automatically rediscovering existing lower bounds for signa-
tures from the literature and in some cases, outperform existing
results. As indicated before, AutoBatch produces a human-
readable proof of correctness which is not machine-checked.
This work develops a systematic approach using EasyCrypt to
certify the correctness and security of batch verifiers produced
by AutoBatch.

B. Computer-assisted cryptographic proofs and design

There has been significant work in developing computer-
assisted frameworks for analyzing cryptographic constructions.
Most of this work has concentrated on the symbolic model of
cryptography [13], in which cryptographic primitives are ide-
alized. However, more recent work has focused on developing
tools to reason directly in the computational model. Cryp-
toVerif [12] is the first such tool that was used for analyzing
the security of cryptographic primitives and protocols. Easy-
Crypt [10] is an interactive tool based on deductive verification
methods that has been used to analyze cryptographic construc-
tions. EasyCrypt can be used as a certifying backend for
cryptographic compilers: for instance, ZKCrypt [8], a verifying
zero-knowledge compiler based on CertiCrypt and EasyCrypt
and on the CACE compiler [7]. ZooCrypt [9] is another auto-
mated tool that allows the synthesis and analysis of public-key
encryption schemes based on one-way trapdoor permutations
and random oracles. ZooCrypt is similar to AutoBatch in the
sense that it proposes to users new algorithms; in contrast to
AutoBatch, it does not require any user input—except bounds
on the size of algorithms to be synthesized. Lastly, AutoGroup
and AutoStrong [4] are automated tools that use SMT solvers
for the synthesis of pairing-based encryption and signature
schemes based on users specific security and efficiency goals.
These tools are also similar to AutoBatch in terms of searching
for optimal solutions on given inputs (although AutoBatch
does not provide any guarantee of optimality).

C. Equational reasoning in cryptography

There has been extensive work to develop symbolic proto-
col verification techniques in presence of equational theories;
see for instance [29]. Bilinear pairings are considered for
instance in [47], [53]. These works focus on a simpler setting;
in particular, they do not consider big operators. Dougherty and
Guttman [30] consider an equational theory without pairings,
but with division (essentially to reason about fields, rather than
rings); extending our work to account for division (in the case
of prime order groups) is an important avenue for further work.

VIII. CONCLUSION

There is growing interest in developing computer-aided
methods for cryptography. Focusing on the practically relevant
example of batch verification for pairing-based signatures and
proofs of knowledge, we have illustrated how two previously
disconnected approaches to computer-aided cryptography (re-
spectively focused on automated optimization and interactive
proofs) naturally converge to deliver optimized and formally
verified cryptographic algorithms.

One contribution of independent interest is our method for
checking equality of pairing-based computations, which is very
useful in the more general context of interactive verification in
EasyCrypt and could be helpful to the cryptographic commu-
nity for checking complex equalities that arise in their proofs
(although their proofs are normally carried on pen-and-paper,
having automated support for such mundane, error-prone com-
putations would be beneficial). It would be interesting to
extend the method to multi-linear maps, an emerging field in
cryptography that involves complex algebraic manipulations
and would clearly benefit from automated procedures to verify
equivalence of computations based on multi-linear maps.

An avenue for further work is to extend AutoBatch into a
compiler that generates implementations of batch Groth-Sahai
proofs from pairing-based equations; we expect that some of
the techniques developed in ZKCrypt [8] will prove useful in
this setting. More generally, we intend to pursue developing
computer-aided tools that assist with the design, generation
and verification of cryptographic constructions, and expect
that such tools will play an increasingly prominent role in
developing new, efficient and secure schemes.

Ackowledgements: This research is partially sup-
ported by ONR grant N000141210914 and NO0014-11-1-
0470, Madrid regional project S2009TIC-1465 PROMETI-
DOS, and Spanish projects TIN2009-14599 DESAFIOS 10
and TIN2012-39391-C04-01 Strongsoft; the U.S. Defense Ad-
vanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under contract FA8750-11-2-
0211. The views expressed are those of he authors and do
not reflect the official policy or position of the Department of
Defense or the U.S. Government.

REFERENCES

[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss,
Ryo Nishimaki, and Miyako Ohkubo. Constant-size structure-
preserving signatures: Generic constructions and simple assumptions.
Cryptology ePrint Archive, Report 2012/285, 2012. http://eprint.iacr.
org/.

[2] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, Advances in Cryptology -
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
209-236. Springer, 2010.

[3]1 Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano,
Michael Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a
framework for rapidly prototyping cryptosystems. Journal of Crypto-
graphic Engineering, 3(2):111-128, 2013.

[4] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. Using
smt solvers to automate design tasks for encryption and signature
schemes. In ACM CCS’13, pages 399-410, New York, NY, USA, 2013.
ACM.

[S] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and
Matthew W. Pagano. Machine-generated algorithms, proofs and soft-
ware for the batch verification of digital signature schemes. In ACM
CCS’12, pages 474487, New York, NY, USA, 2012. ACM.

[6] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and
Matthew W. Pagano. Machine-generated algorithms, proofs and soft-
ware for the batch verification of digital signature schemes. Cryptology
ePrint Archive, Report 2013/175, 2013. http://eprint.iacr.org/.

[71 José Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,
Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying compiler
for Zero-Knowledge Proofs of Knowledge based on Sigma-protocols.
In Computer Security — ESORICS 2010, 15th European Symposium
on Research In Computer Security, volume 6345 of Lecture Notes in
Computer Science, pages 151-167, Heidelberg, 2010. Springer.

[8] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe,
Stephan Krenn, and Santiago Zanella-Béguelin. Full proof cryptogra-
phy: verifiable compilation of efficient zero-knowledge protocols. In
19th ACM Conference on Computer and Communications Security, CCS
2012, pages 488-500, New York, 2012. ACM.

[9] Gilles Barthe, Juan-Manuel Crespo, Benjamin Grégoire, César Kunz,
Yassine Lakhnech, Benedikt Schmidt, and Santiago Zanella-Béguelin.
Fully automated analysis of padding-based encryption in the computa-
tional model. In ACM Conference on Computer and Communications
Security, 2013.

[10] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago

Zanella-Béguelin. Computer-aided security proofs for the working
cryptographer. In Advances in Cryptology — CRYPTO 2011, volume

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

6841 of Lecture Notes in Computer Science, pages 71-90, Heidelberg,
2011. Springer.

Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification
for modular exponentiation and digital signatures. In EUROCRYPT’98,
volume 1403 of LNCS, pages 236-250. Springer-Verlag, 1998.

Bruno Blanchet. A computationally sound mechanized prover for
security protocols. In 27th IEEE Symposium on Security and Privacy,
S&P 2006, pages 140-154. IEEE Computer Society, 2006.

Bruno Blanchet. Security protocol verification: Symbolic and computa-
tional models. In Ist International Conference on Principles of Security
and Trust, POST 2012, volume 7215 of Lecture Notes in Computer
Science, pages 3-29, Heidelberg, 2012. Springer.

Olivier Blazy, Georg Fuchsbauer, Malika Izabachéne, Amandine Jam-
bert, Hervé Sibert, and Damien Vergnaud. Batch groth-sahai. In ACNS
’10, pages 218-235. ”Springer-Verlag”, 2010.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge
and its applications. In 20th Annual ACM Symposium on Theory of
computing, STOC 1988, pages 103-112. ACM, 1988.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, volume 3152 of LNCS, pages 45-55, 2004.

Dan Boneh and Matt Franklin. Identity-based encryption from the Weil
pairing. SIAM J. of Computing, 32(3):586—615, 2003. extended abstract
in Crypto’Ol.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In ASIACRYPT 01, volume 2248 of Lectures Notes in
Computer Science, pages 514-532, 2001.

Colin Boyd and Chris Pavlovski. Attacking and repairing batch
verification schemes. In Advances in Cryptology — ASIACRYPT 00,
volume 1976, pages 5871, 2000.

Xavier Boyen. Mesh signatures: How to leak a secret with unwitting
and unwilling participants. In EUROCRYPT, volume 4515 of LNCS,
pages 210-227. Springer, 2007.

Jan Camenisch, Susan Hohenberger, and Michael @stergaard Pedersen.
Batch verification of short signatures. In EuroCrypt’07, volume 4515
of LNCS, pages 246-263. Springer-Verlag, 2007. Full version at http:
/leprint.iacr.org/2007/172.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew K. Franklin, editor,
Advances in Cryptology - CRYPTO, volume 3152 of Lecture Notes in
Computer Science, pages 56—72. Springer, 2004.

Tianjie Cao, Dongdai Lin, and Rui Xue. Security analysis of some batch
verifying signatures from pairings. International Journal of Network
Security, 3(2):138-143, 2006.

Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos
Vamvourellis. Algebraic (trapdoor) one-way functions and their ap-
plications. In TCC, pages 680-699, 2013.

Jae Choon Cha and Jung Hee Cheon. An identity-based signature from
gap Diffie-Hellman groups. In PKC ’03, volume 2567 of LNCS, pages
18-30. Springer-Verlag, 2003.

Sanjit Chatterjee and Palash Sarkar. HIBE with short public parameters
without random oracle. In ASIACRYPT ’06, volume 4284 of LNCS,
pages 145-160, 2006.

Jung Hee Cheon and Dong Hoon Lee. Use of sparse and/or complex
exponents in batch verification of exponentiations. IEEE Trans. Com-
puters, 55(12):1536-1542, 2006.

Sherman S. M. Chow, Siu-Ming Yiu, and Lucas C.K. Hui. Efficient
identity based ring signature. In ACNS, volume 3531 of LNCS, pages
499-512, 2005.

Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey
of algebraic properties used in cryptographic protocols. Journal of
Computer Security, 14(1):1-43, 2006.

Daniel J. Dougherty and Joshua D. Guttman. An algebra for symbolic
diffie-hellman protocol analysis. In Catuscia Palamidessi and Mark
Ryan, editors, Trustworthy Global Computing, volume 8191 of Lecture
Notes in Computer Science, pages 164—181. Springer, 2013.

Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar.

An algebraic framework for diffie-hellman assumptions. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO, volume

[32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

8043 of Lecture Notes in Computer Science, pages 129—147. Springer,
2013.

Uriel Feige and Adi Shamir. Witness indistinguishable and witness
hiding protocols. In STOC, pages 416-426. ACM, 1990.

Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and
Michael @stergaard Pedersen. Practical short signature batch verifi-
cation. In CT-RSA, volume 5473 of LNCS, pages 309-324, 2009.

Amos Fiat. Batch RSA. In Advances in Cryptology — CRYPTO 89,
volume 435, pages 175-185, 1989.

Rosario Gennaro, Darren Leigh, Ravi Sundaram, and William S.
Yerazunis. Batching schnorr identification scheme with applications
to privacy-preserving authorization and low-bandwidth communication
devices. In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT,
volume 3329 of Lecture Notes in Computer Science, pages 276-292.
Springer, 2004.

O. Goldreich. Zero-knowledge twenty years after its invention.
Technical Report TR02-063, Electronic Colloquium on Computational
Complexity, 2002.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186-208, 1989.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Advances in Cryptology—-EUROCRYPT 2008, pages
415-432. Springer, 2008.

Lein Harn. Batch verifying multiple DSA digital signatures. Electronics
Letters, 34(9):870-871, 1998.

Lein Harn. Batch verifying multiple RSA digital signatures. Electronics
Letters, 34(12):1219-1220, 1998.

Florian Hess. Efficient identity based signature schemes based on
pairings. In Selected Areas in Cryptography, volume 2595 of LNCS,
pages 310-324. Springer-Verlag, 2002.

Susan Hohenberger and Brent Waters.
natures under standard assumptions.
EUROCRYPT, 2009.

Min-Shiang Hwang, Cheng-Chi Lee, and Yuan-Liang Tang. Two simple
batch verifying multiple digital signatures. In 3rd Information and
Communications Security (ICICS), pages 233-237, 2001.

Min-Shiang Hwang, Iuon-Chang Lin, and Kuo-Feng Hwang. Cryptanal-
ysis of the batch verifying multiple RSA digital signatures. Informatica,
Lithuanian Academy of Sciences, 11(1):15-19, 2000.

Antoine Joux. A one round protocol for tripartite diffie-hellman. In
Wieb Bosma, editor, Algorithmic Number Theory, ANTS, volume 1838
of Lecture Notes in Computer Science, pages 385-394. Springer, 2000.

Realizing hash-and-sign sig-
In Advances in Cryptology —

Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive nizk proofs for
linear subspaces. In Kazue Sako and Palash Sarkar, editors, Advances in
Cryptology — ASIACRYPT, volume 8269 of Lecture Notes in Computer
Science, pages 1-20. Springer, 2013.

Steve Kremer and Laurent Mazaré. Computationally sound analysis
of protocols using bilinear pairings. Journal of Computer Security,
18(6):999-1033, 2010.

Chi-Sung Laih and Sung-Ming Yen. Improved digital signature suitable
for batch verification. IEEE Transactions on Computers, 44(7):957-959,
1995.

C. Lim and P. Lee. Security of interactive DSA batch verification. In
Electronics Letters, volume 30(19), pages 1592-1593, 1994.

Anna Lysyanskaya, Ronald L Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Selected Areas in Cryptography, pages 184—
199. Springer, 2000.

D. Naccache. Secure and practical identity-based encryption, 2005.
Cryptology ePrint Archive: Report 2005/369.

David Naccache, David M’Rathi, Serge Vaudenay, and Dan Raphaeli.
Can DSA be improved? complexity trade-offs with the digital signature
standard. In Advances in Cryptology — EUROCRYPT ’94, volume 950,
pages 77-85, 1994.

Alisa Pankova and Peeter Laud. Symbolic analysis of cryptographic
protocols containing bilinear pairings. In Computer Security Founda-
tions Symposium (CSF), pages 63—77. IEEE, 2012.

Somindu C. Ramanna, Sanjit Chatterjee, and Palash Sarkar. Variants of
waters’ dual-system primitives using asymmetric pairings. Cryptology
ePrint Archive, Report 2012/024, 2012. http://eprint.iacr.org/.

http://eprint.iacr.org/2007/172.
http://eprint.iacr.org/2007/172.
http://eprint.iacr.org/

[55]
[56]

(571

[58]

[59]

Martin Stanek. Attacking LCCC batch verification of RSA signatures,
2006. Cryptology ePrint Archive: Report 2006/111.

Brent Waters. Efficient Identity-Based Encryption without random
oracles. In EUROCRYPT, volume 3494 of LNCS, pages 114-127, 2005.
Brent Waters. Dual system encryption: Realizing fully secure ibe and
hibe under simple assumptions. Cryptology ePrint Archive, Report
2009/385, 2009. http://eprint.iacr.org/.

Hyolin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch verifications
with ID-based signatures. In ICISC, Lecture Notes in Computer
Science, pages 233-248, 2004.

Chenxi Zhang, Rongxing Lu, Xiaodong Lin, Pin-Han Ho, and Xuemin

[60]

[61]

Shen. An efficient identity-based batch verification scheme for vehicular
sensor networks. In INFOCOM, pages 246-250. IEEE Press, 2008.

Fangguo Zhang and Kwangjo Kim. Efficient ID-based blind signature
and proxy signature from bilinear pairings. In 8th Information Security
and Privacy, Australasian Conference (ACISP), volume 2727, pages
312-323, 2003.

Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Efficient
verifiably encrypted signature and partially blind signature from bilinear
pairings. In Progress in Cryptology — INDOCRYPT ’03, volume 2904,
pages 191-204, 2003.

http://eprint.iacr.org/

