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Abstract—After several years of theoretical research on
distance bounding protocols, the first implementations of such
protocols have recently started to appear. These protocols are
typically analyzed with respect to three types of attacks, which
are historically known as Distance Fraud, Mafia Fraud, and
Terrorist Fraud.

We define and analyze a fourth main type of attack on
distance bounding protocols, called Distance Hijacking. This
type of attack poses a serious threat in many practical scenarios.
We show that many proposed distance bounding protocols are
vulnerable to Distance Hijacking, and we propose solutions to
make these protocols resilient to this type of attack.

We show that verifying distance bounding protocols using
existing informal and formal frameworks does not guarantee
the absence of Distance Hijacking attacks. We extend a formal
framework for reasoning about distance bounding protocols to
include overshadowing attacks. We use the resulting framework
to prove the absence of all of the found attacks for protocols
to which our countermeasures have been applied.

Keywords-Distance bounding, location verification, position
verification, attacks, hijacking, multi-prover environment, for-
mal model, formal verification

I. INTRODUCTION

By using distance bounding protocols, a device (the

verifier) can securely obtain an upper bound on its distance

to another device (the prover). A number of distance

bounding protocols were proposed in recent years [2], [4],

[5], [12], [14], [15], [19]–[21], [23], [24], [27]–[29]. The

proposed protocols differ in terms of the performance and

security guarantees that they provide. So far, several distance-

bounding protocols were implemented, some using digital

processing and short symbols [9], [16], whereas others rely on

analog processing and use signal streams (operating similarly

to radar systems) [23].

The security of distance-bounding protocols was so far

mainly evaluated by analyzing their resilience to three types

of attacks. For historical reasons, these are known as Distance
Fraud, Mafia Fraud and Terrorist Fraud. In Distance Fraud

attacks, a sole dishonest prover convinces the verifier that

he is at a different distance than he really is. In Mafia Fraud

attacks, the prover is honest, but an attacker tries to modify

the distance that the verifier establishes by interfering with

their communication. In Terrorist Fraud attacks, the dishonest

prover colludes with another attacker that is closer to the

verifier, to convince the verifier of a wrong distance to

the prover. So far, it was assumed that distance bounding

protocols that are resilient against these three attack types

can be considered secure.

However, we show that many of these protocols, irrespec-

tive of their physical-layer implementation, and including

the classical Brands and Chaum protocol [4] and the recent

CRCS protocol [23], are vulnerable to attacks when used

in environments with multiple provers. We coin this type of

attack Distance Hijacking. In Distance Hijacking attacks, a

dishonest prover convinces the verifier that it is at a different

distance than it actually is, by exploiting the presence of an

honest prover. For example, one of the ways in which the

dishonest prover can achieve this is by hijacking the distance

measurement phase of a distance bounding protocol from

an honest (closer or further) prover. This type of attack can

pose a serious threat in many practical scenarios.

Conceptually, Distance Hijacking can be placed between

Distance Fraud and Terrorist Fraud. Unlike Terrorist Fraud,

in which a dishonest prover colludes with another attacker,

Distance Hijacking involves a dishonest prover interacting

with other honest provers. Unlike Distance Fraud attacks,

which involve only a dishonest prover and a verifier, Distance

Hijacking attacks additionally involve other honest provers.

These differences have significant consequences. For example,

the countermeasures proposed against Terrorist Fraud rely

on the assumption that dishonest provers are not willing

to share their keying material with other attackers. Such

countermeasures will therefore not deter the dishonest provers

from executing Distance Hijacking attacks that do not involve

other attackers. Furthermore, Distance Hijacking can occur

even in situations where Terrorist Fraud is not a concern.

In fact, as we will show, protocols that are resilient against

the three classical attack types may still be vulnerable to

Distance Hijacking.

We define an exhaustive classification for attacks on

distance bounding protocols that includes Distance Hijacking.

Our classification naturally leads to minor reformulations of

previously known attack types. Instead of using the traditional

attack names for our new definitions, we propose names that

are more descriptive and less generic.

We perform a case study of existing protocols. All distance
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bounding protocols that were proposed in the last years

roughly fall into two categories: those based on the Brands

and Chaum protocol, and those based on the Hancke and

Kuhn protocol. We show that all proposed protocols that

followed the structure proposed by Brands and Chaum are

vulnerable to Distance Hijacking. Protocols that followed the

structure proposed by Hancke and Kuhn are less vulnerable

to this type of attack. We propose two classes of effective

and generic countermeasures that make Brands and Chaum

and related protocols secure against Distance Hijacking in

the above scenario. Our countermeasures are inexpensive:

the protocols can be repaired without introducing additional

messages or cryptographic operations.

Remarkably, none of the existing frameworks for analyzing

distance bounding protocols (e. g., [1], [3], [10], [18], [25])

guarantees the absence of our Distance Hijacking attacks,

even if some instances of Distance Hijacking can be detected

using some of those frameworks. We extend the formal

framework of Basin et al. [3] to capture all known types of

Distance Hijacking attacks and use the resulting framework

to analyze several protocols. The new framework enables us

to model bit-level manipulations of messages by considering

overshadowing parts of a message [22], as well as flipping

some bits of a message. We use our framework to formally

prove for specific protocols that our fixes indeed prevent the

found attacks.

We show that all distance bounding protocols, including

those based on the Hancke and Kuhn protocol, may be

vulnerable to Distance Hijacking if run alongside another

distance bounding protocol. This can occur if more than one

distance bounding protocol is used in the same environment,

i. e., a multi-protocol environment. In particular, some pro-

tocols, when run by an honest prover, enable a dishonest

prover (running, e. g., a Hancke and Kuhn protocol) to hijack

the distance of the honest prover. Such attacks can be seen

as a variant of the Chosen Protocol Attack [13]. However,

unlike Chosen Protocol attacks, our attacks do not require the

protocols to share any cryptographic material. We discuss

designs of distance bounding protocols that enable such

attacks and show how to mitigate these attacks.

Contributions: First, we identify Distance Hijacking

as a threat for distance bounding protocols that are run in

multi-prover environments, whose absence is not guaranteed

by existing frameworks. Second, we show that prominent

distance bounding protocols are vulnerable to Distance

Hijacking and propose countermeasures. Third, we extend a

formal framework for reasoning about Distance Bounding

protocols to model overshadowing attacks and use the result-

ing framework to prove correctness of our countermeasures

for specific protocols. Fourth, we address the security of

distance bounding protocols in multi-protocol environments

and propose mitigating measures. Finally, we generalize

Distance Hijacking to Location Hijacking, and show that it is

possible to hijack locations at which no other provers reside.

We proceed as follows. In Section II we provide background

on distance bounding protocols. In Section III we introduce

Distance Hijacking attacks and analyze the resilience of

existing distance bounding protocols against these attacks. We

relate the attacks to the classical attack types and provide an

exhaustive classification. In Section IV we show how distance

bounding protocols can be made resilient against Distance

Hijacking. In Section V we present an extended formal

framework and analyze a set of protocols. In Section VI

we analyze the resilience of distance bounding protocols

to Distance Hijacking in multi-protocol environments. We

introduce the notion of Location Hijacking in Section VII,

present the related work in Section VIII, and conclude in

Section IX.

II. BACKGROUND

The goal of a distance bounding protocol is to enable a

verifier to establish an upper bound on its physical distance to

a prover. As a running example, we consider the basic Brands

and Chaum protocol with signatures [4, p. 7], depicted in

Figure 1. In the protocol, the prover P randomly generates

(denoted by ∈R ) a bit string m1, . . . ,mk, and sends a

commit of this value to the verifier V . Thus, although the bit

string is not revealed yet, V will be able to check whether

P indeed committed to this particular string when V learns

the string later. The verifier then generates his own random

bit string α1, . . . , αk, and initiates the so-called rapid bit
exchange. In this exchange, bits are sent one-by-one, and

the prover has to respond as quickly as possible with the

exclusive-or (⊕) of the challenge bit string α and his own

bit string. In the end, the verifier will derive an upper bound

on the distance to the prover from the response times. Notice

that the prover can delay messages at will, making himself

appear farther away, but he cannot respond faster than what

is dictated by the time-of-flight of the messages. After this

phase, P concatenates the bits as c, and sends to V a means to

open the commit he sent earlier, as well as the concatenation

c signed with his signature key. Upon receiving this final

message, V verifies that the commit previously sent by P
indeed matches with the response (by computing mi =
αi ⊕ βi and opening the commit), concatenates the bits he

has observed, and compares them to the received signature

using the public key of P .

Because the goal of a distance bounding protocol is to

provide a guarantee for the verifier V , V will never participate

in an attack since that would mean V would be attacking

itself. The attacker can of course pretend to be another verifier

V ′, and abuse his location to attack the real verifier V .

As stated in the introduction, three different classes

of attacks are traditionally considered in the analysis of

distance bounding protocols: Distance Fraud, Mafia Fraud

and Terrorist Fraud. All attacks that fall into one of these

three classes have a similar goal, namely to make the verifier

believe that the prover P is physically closer to the verifier
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Prover

P

Verifier

V

m ∈R {0, 1}
k

commit(m)

α ∈R {0, 1}
k

αi

βi ← αi ⊕mi
βi

Rapid bit exchange for i = 1 to k

c← α1|β1| · · · |αk|βk

(open commit), sign(c)

Verify commit
c← α1|β1| · · · |αk|βk

verify sign(c)

msc Signature-based Brands and Chaum protocol

Figure 1. Signature-based Brands and Chaum protocol.

V than it really is. The main difference between these attacks

is in the parties that carry out the attack, and their mutual

relationships.

Mafia Fraud attacks, also called relay attacks, were first

described by Desmedt [8]. In this type of attack, both

the prover P and verifier V are honest, and the attack is

performed by an external attacker A. The attacker attempts

to shorten the distance measured between the honest prover

and the verifier. In Mafia Fraud attacks, the physical distance

between the attacker and the verifier is typically small in

order for the attacker to be able to shorten the distance.

In a Distance Fraud attack, a dishonest prover P will

try to shorten the distance measured by the verifier V . This

type of attack is executed by the dishonest prover P alone,

without collusion with other (external) parties. An example

of a Distance Fraud attack occurs if the protocol allows the

prover to send his reply before receiving the challenge. This

enables the prover to reply too early, thereby shortening the

distance measured by the verifier.

The third class of attacks is Terrorist Fraud attacks [8]. In

this type of attack, a dishonest prover P collaborates with

an external attacker A to convince the verifier V that he

is closer than he really is. All countermeasures to Terrorist

Fraud make the assumption that the dishonest prover P is

unwilling to reveal his long-term (private or secret) key to

the attacker A that he collaborates with. Possible reasons

for this unwillingness are impersonation, i. e., the external

attacker can later use the key to impersonate the dishonest

prover, and traceability, i. e., the key may later be used to

implicate the dishonest prover in performing a Terrorist Fraud

attack. Furthermore, from the perspective of the verifier, it is

impossible to distinguish between the external attacker and

the prover if the attacker knows the long term key of the

prover.

III. DISTANCE HIJACKING

In this section we define a fourth class that has until

now been overlooked in the design of distance bounding

protocols, Distance Hijacking attacks. We relate this class

of attacks to the three classical attack types on distance

bounding protocols, and propose an exhaustive classification

of attacks on distance bounding protocols.

A. Distance Hijacking attacks

We say that a prover P is honest if and only if all of P ’s

actions conform to the protocol specification.

Definition 1. A Distance Hijacking attack is an attack in
which a dishonest prover P exploits one or more honest par-
ties P1, . . . , Pn to provide a verifier V with false information
about the distance between P and V .

A protocol is then said to be vulnerable to Distance

Hijacking if it allows P to perform a successful Distance

Hijacking attack. We observe that these attacks do not exclude

the involvement of other attackers with whom the dishonest

prover is colluding or the involvement of other honest verifiers

that might enable the execution of the attack.

In the context of distance bounding protocols, the infor-

mation about the distance is the upper bound; hence attacks

involve convincing V that P is closer than it actually is. In

a typical Distance Hijacking attack on a distance bounding

protocol, a dishonest prover P convinces a verifier V that

P has executed a distance measurement phase (e. g., a rapid

bit exchange) with V , whereas this phase has been really

executed by an honest prover P ′. This is done without the

cooperation of the honest prover P ′. Often this type of attack

can be carried out by allowing the honest prover to complete

the distance bounding protocol as he normally would, and

then by replacing all messages that contain signatures or

MACs, with messages signed (or MAC’ed) by the attacker.

Example 1 (Distance hijacking attack on signature-based

Brands and Chaum). Figure 2 depicts a basic Distance
Hijacking attack on the signature-based Brands and Chaum
from Figure 1.

In the attack, V thinks he is communicating with P , where
P is dishonest. When an honest prover P ′ tries to prove his
distance, P initially allows the protocol to proceed as normal
between P ′ and V , waiting until the final signature is sent
by P ′. Note that before this point, V has no cryptographic
evidence that the messages it received were indeed sent by
P ′. When P ′ sends the signature, P jams the message and
re-signs the content c with his own signature key, and sends
the result to V . V will successfully verify the commit as well
as the signature, and will falsely conclude that P has also
sent the previous message. Thus, V assumes that P is within
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Dishonest prover

P

Honest prover

P ′

Verifier

V

m ∈R {0, 1}
k

commit(m)

α ∈R {0, 1}
k

αi

βi = αi ⊕mi

Rapid bit exchange for i = 1 to k

c← α1|β1| · · · |αk|βk

(open commit), signP ′(c)

(open commit), signP (c)

Verify commit
c← α1|β1| · · · |αk|βk

verify signP (c)

msc Attack on basic signature-based Brands and Chaum

Figure 2. Distance Hijacking attack on basic signature-based Brands and
Chaum. signP and signP ′ denote the signatures with the signature keys
of P and P ′, respectively.

the distance computed from the distance bounding phase,
even though in reality, this phase was performed by P ′.

We next show an example scenario in which Distance

Hijacking attacks pose a threat.

Example 2 (Real-world scenario). Consider the scenario
depicted in Figure 3, in which several people work in a secure
facility. In the facility is a mainframe containing sensitive
information. The mainframe can be accessed wirelessly by
all authorized personnel, in order to facilitate easy access
by multiple people at the same time. As an added security
mechanism, in case an employee loses his smartcard with his
private key, the mainframe can only be accessed by people
inside the building. This is verified every time an employee
logs in to the system, by running a distance bounding protocol
between a station in the building (acting as the verifier) and
the employees terminal (acting as the prover).

Assume that an attacker has managed to get hold of an
employee smartcard but is unable to physically access the
building. He is instead located in a van in the parking lot
where he has a powerful antenna capable of communicating
with the wireless terminal inside the building. However in
order to log in to the system the attacker needs to prove that
he is inside the building by running a distance bounding
protocol.

If the distance bounding protocol in use is vulnerable to
distance hijacking, the attacker can exploit the presence of
the smartcard of another (non-collaborating and unaware)
employee inside the building to execute a Distance Hijacking
attack. The mainframe security system now believes that the

Figure 3. Real-world scenario for Distance Hijacking. P has a (stolen)
smartcard. However, he cannot enter the secure facility and he does not
have any collaborators inside the facility. In a Distance Hijacking attack, P
exploits the presence of an honest P ′ to convince V that P is within the
secure facility.

attacker is in the building with a valid private key, and he
is granted wireless access.

As straightforward as this type of attack may seem, a sur-

prising number of distance bounding protocols are vulnerable

to Distance Hijacking, as we will show in Section III-E. In

Section VI we discuss more complex Distance Hijacking

attacks, where several different distance bounding protocols

are used in the same environment.

B. Relation to historical attack types

We first relate Distance Hijacking to the three attack

types that are traditionally considered for distance bounding

protocols.

As stated in the introduction, conceptually speaking,

Distance Hijacking can be placed between Distance Fraud

and Terrorist Fraud. One could thus consider extending the

definition of either Distance Fraud or Terrorist Fraud to

also include Distance Hijacking attacks. However, given

that previous analyses and countermeasures do not exclude

such attacks, the consequence would be that many protocols

would be incorrectly labeled as being resistant against the

(new definitions of) Distance Fraud or Terrorist Fraud, or

that existing countermeasures are insufficient. We therefore

choose to introduce Distance Hijacking as a separate type

of attack.

We show why the existing three attack types do not cover

Distance Hijacking. In Mafia Fraud attacks the prover is

honest. Distance Fraud attacks are defined as attacks by a

lone dishonest prover. These two types are therefore clearly

different from Distance Hijacking, which involves at least a

dishonest prover and another honest party.

To illustrate the difference between Distance Hijacking and

the attack type that is conceptually closest, Terrorist Fraud,

we consider again the scenario from Example 2. Recall that

in Terrorist Fraud, the dishonest prover collaborates with

another (closer) attacker. In the scenario from the example,

there are two main reasons why the absence of Terrorist Fraud

attacks does not guarantee the absence of Distance Hijacking
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Figure 4. Classification of attacks on distance bounding protocols, in which a verifier computes an incorrect distance bound for a prover.

attacks. First, we observe that Terrorist Fraud is not possible

in this scenario, because the attacker does not have another

attacker inside the building that is willing to cooperate with

him. Hence the designers of the system could consider using

a protocol such as signature-based Brands and Chaum, on

which Distance Hijacking may still be possible. Second, the

common countermeasure to Terrorist Fraud is to force the

attacker to reveal his long term key to his accomplice, based

on the assumption that this will deter the attacker. However,

in the scenario from Example 2 this assumption does not

hold: the attacker has no problem with leaking the (stolen)

long term key. Additionally, even if he does transmit the

key, it will be to the (unmodified) smartcard of an honest

employee. The employee’s smartcard will typically not detect

this key, and will even delete the received data after the

session ends. Hence guaranteeing the absence of Terrorist

Fraud attacks, either by assumption or by countermeasure,

does not guarantee the absence of Distance Hijacking.

C. Attack classification

The traditional attack types Mafia Fraud, Distance Fraud,

and Terrorist Fraud, are defined independent of each other and

usually in incompatible ways. This makes it hard to determine

whether all possible attacks on distance bounding protocols

are covered by these types, even if we include Distance

Hijacking attacks. We propose to remedy this situation by

deriving attack type definitions that cover all possible attacks

by construction. Intuitively, we perform a sequence of case

distinctions based on three attributes of attacks on distance

bounding protocols: whether the prover is honest, whether

the prover is the only party involved in attacking the verifier,

and if not, whether one of the other involved parties is honest.

By considering these three attributes we arrive at definitions

for four attack types.

We introduce some additional terminology. The goal of a

distance bounding protocol is to compute a correct distance

bound. More precisely, we say that the verifier V computes

the correct distance bound d on P , if P or his identifying

key1 is indeed within the (computed or expected) distance d.

We make two assumptions on distance-bounding protocols.

First, in the absence of attackers, the verifier computes the

1In our context, P is identified by his key. If others know P ’s key, they
cannot be distinguished from P .

correct distance bound. Second, we assume that the protocols

guarantee weak authentication of P (i. e., aliveness [17]).
Using the above terminology and assumptions, we provide

an exhaustive classification of attacks on distance bounding

protocols attacks in which the verifier computes an incorrect

distance bound for the prover, represented in Figure 4.

Assume that V does not compute the correct distance bound

d for P . Thus, neither P nor his identifying key is within

the distance d. Because of our first protocol assumption, this

must be caused by an attacker.
We distinguish two main cases. If P is honest, then P is

not the attacker, and therefore an external attacker is changing

the distance. We call this type of attack External Distance
Fraud.

Definition 2. An External Distance Fraud attack is an
attack in which an attacker provides a verifier V with false
information about the distance between an honest prover P
and V .

In the second case, if P is not honest, then we distinguish

again between two cases. First, if only P is involved in the

attack, he must be the attacker, trying to change his own

distance. We call this type of attack Lone Distance Fraud.

Definition 3. A Lone Distance Fraud attack is an attack
in which a lone prover P provides a verifier V with false
information about the distance between P and V .

If other parties are involved, we make a final distinction.

If all of the other parties are dishonest or collaborating, the

attack is called an Assisted Distance Fraud attack.

Definition 4. An Assisted Distance Fraud attack is an attack
in which a prover P is assisted by one or more other parties,
none of which are honest, to provide a verifier V with false
information about the distance between P and V .

Alternatively, if one of the other parties involved in the

attack is honest, we call the attack a Distance Hijacking
attack, as in Definition 1.

In constructing the above classification, we have tried to

stay close to the historical attack types. In fact, three of our

attack types are variants of the historical types. However, we

have tried to provide them with more descriptive and less

generic names. In particular, our definition of Lone Distance

Fraud closely resembles the classical notion of Distance
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Fraud. Our definition of External Distance Fraud resembles

that of Mafia Fraud, and our definition of Assisted Distance

Fraud includes Terrorist Fraud attacks.
It is worth pointing out that although P refers to a specific

identity, or rather the identity of a party holding a specific key,

this classification is also valid in the context of anonymous

distance bounding protocols [30]. In anonymous distance

bounding, the only guarantee provided to the verifier is that

someone is within a specific distance, as opposed to P is

within a specific distance. In order to fit anonymous distance

bounding protocols into this model, we say that all provers

in anonymous distance bounding share the same key (which

could be public) and, in the decision points in Figure 4, “the

prover” must be replaced by “the closest prover”.

D. Multi-prover environments
The main requirement for Distance Hijacking is that there

are other parties in the environment, which can be exploited

by a dishonest prover. We call environments in which multiple

provers may occur multi-prover environments. We give two

concrete examples of such environments.
Multiple provers, single verifier: One such a scenario

occurs when a verifier accepts proofs from multiple provers,

as depicted in Figure 5. For example, this may occur in RFID

distance bounding where a reader may accept multiple tags. In

this case, Distance Hijacking occurs when a dishonest prover

P hijacks the distance from P ′ to V and instead convinces

V that P is at this distance, thereby falsely “shortening” the

distance between P and V .
Note that in the above example, the verifiers accept

protocol sessions from multiple provers. Below we show

that this is not required for the attacks.
Multiple provers, multiple verifiers: Consider an envi-

ronment with multiple provers P, P ′, . . . and corresponding

verifiers, VP , VP ′ , . . ., where verifier VP only accepts proofs-

of-distance from prover P and verifier VP ′ only from prover

P ′. Even in this scenario, a prover P can hijack a session

from a prover P ′ to a verifier VP ′ to make VP falsely believe

that P is at distance dist(P ′, VP ). This type of scenario is

depicted in Figure 6. P ′ assumes that he is proving his

distance to VP ′ , but instead, the fast response of P ′ is

accepted by VP , who assumes that it was sent by P .
Note that for the attack to work, neither P and VP

nor P and P ′ need to be physically close. Instead, the

communication between P ′ and VP ′ can be enabled by the

attacker who created a relay between them whereas P can

communicate to P ′ using a high power transceiver and a

high gain antenna. This second scenario may even occur

across domains: the only requirement is that the distance

measurement (e. g., rapid bit exchange) phases used in both

domains are to some extent compatible.

E. Analysis of Existing Distance Bounding Protocols
We have analyzed several protocols and found numerous

new attacks that fall into the class of Distance Hijacking

Figure 5. Scenario in which
V accepts protocol sessions from
multiple provers, here P and P ′,
where Distance Hijacking may be
a threat.

Figure 6. Scenario with mul-
tiple prover/verifier pairs, where
Vx only accepts sessions from
x. Even in this case, Distance
Hijacking may be possible.

attacks. We give an overview of the protocols analyzed

in Table I. The vast majority of the attacks we find are

new. To the best of our knowledge, only two such attacks

were previously reported in the literature. The attack on a

simplified version of “Brands and Chaum (signature)” is

described in [25]. The attack on a member of the protocol

family proposed by Meadows et al., in particular for the

instance with F (NV ,NP , P ) = 〈NV ,NP⊕P 〉, is described

in [3]. All other attacks in the table are new.

In our analysis we used the following system and attacker

model. We assume that the attacker controls the network

and may eavesdrop, intercept, inject, and block messages.

We do not pose any restrictions on the number or locations

of devices that the attacker holds; the attacker can control

several dishonest provers as well as other wireless devices.

Entities are identified by their keys; entities that hold the

same keys cannot be distinguished.

In this paper, we describe two attacks from the table

in detail. We already described the attack on the basic

Brands and Chaum protocol with signatures in Example 1.

We describe an attack on the Kuhn, Luecken, Tippenhauer

protocol in Example 4.

In general, it seems that protocols that closely follow the

original Brands and Chaum protocols do not offer protection

against Distance Hijacking. In contrast, protocols that derive

from the Hancke and Kuhn protocol, which explicitly uses

the key shared between agents in the distance bounding

phase, protect against Distance Hijacking in single-protocol

environments. However, as we explain in Section VI, all

protocols, including the ones derived from the Hancke and

Kuhn protocol, are vulnerable to Distance Hijacking in

specific multi-protocol environments.

We note that for many of the attacks in the table, it

is required that the verifier V is not “disturbed” by P ’s

messages. As a concrete example, consider the attack in

Figure 2. If V would receive and parse P ’s final signed

message, V might abort the protocol, in which case the

attack fails. There are several practical scenarios in which

the attacks are directly possible. For example, assume that

the signed message is sent through standard WiFi channels,

and P assumes that he is responding to some other verifier
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No. Protocol
Discovered

attack

1 Brands and Chaum (Fiat-Shamir) [4, p. 351] Yes
2 Brands and Chaum (Schnorr) [4, p. 353] Yes
3 Brands and Chaum (signature) [4, p. 350] Yes
4 Bussard and Bagga [5] No
5 CRCS [23] Yes

6 Hancke and Kuhn [12] No
7 Hitomi [20] No
8 KA2 [15] No
9 Kuhn, Luecken, Tippenhauer [16] Yes
10 MAD [29] Yes

11 Meadows et al. for F (. . .) = 〈NV ,NP ⊕ P 〉 [18] Yes
12 Munilla and Peinado [19] No
13 Noise resilient MAD [27] Yes
14 Poulidor [28] No
15 Reid et al. [24] No

16 Swiss-Knife [14] No
17 Tree [2] No
18 WSBC+DB [21, p. 50] Yes
19 WSBC+DB Noent [21, p. 51] Yes

Table I
DISCOVERED DISTANCE HIJACKING ATTACKS ON EXISTING PROTOCOLS

(SINGLE PROTOCOL ENVIRONMENT).

V2. In this case, P sends the message addressed to V2, and

V ’s hardware may already filter out the message before it

arrives at the protocol level. Alternatively, the attacker can

jam-and-eavesdrop the signals sent by P (except for P ’s fast

response). Jamming seems to be possible on all protocols in

the table except for MAD, which explicitly requires jamming

detection, upon which the protocol aborts.

IV. PROTECTING AGAINST DISTANCE HIJACKING

We have seen that many protocols are vulnerable to

Distance Hijacking, and we now show how to repair them.

Without loss of generality, any distance bounding protocol

can be divided into three phases as depicted in Figure 7: the

setup phase, where nonces and commitments are exchanged;

the distance measurement phase, where the physical distance

is measured, often using rapid bit exchange; and the finalizing
phase that often includes a proof of identity. The only phase

that is required to be non-empty is the distance measurement

phase. The distance measurement phase follows the following

schema: the verifier sends out a fresh challenge, to which the

prover responds with some value; this process may be split

into several rounds. The distance measurement is derived

from the measured response time, which means that the

prover must reply immediately. It is therefore infeasible to

use cryptographic functions (such as encryption or signatures)

in the computation of the response in this phase.

In a typical Distance Hijacking attack, a dishonest prover

exploits another prover’s response in the distance measure-

ment phase. Thus, although the dishonest prover has few

restrictions, because he does not have to follow the protocol

and can construct his own messages as he chooses, he can

only exploit honest provers as far as the protocol allows him

Prover

P

Verifier

V

Setup phase

Time measurement

Challenge

Response

Distance measurement phase

Finalizing phase

msc Phases

Figure 7. Phases in distance bounding protocols: Setup, distance
measurement, and finalizing. The setup and finalizing phases may be empty.

to. Therefore, in the fixes we propose, we ensure that the

distance measurement response of an honest prover cannot

be abused by others in their communication with the verifier.

Before we proceed to solutions, we provide more intuition

by showing why two seemingly straightforward fixes to the

basic Brands and Chaum protocol fail.

Example 3 (Flawed fix: Xor identity). A first flawed fix is
to include the prover’s identity in the response messages
by sending challenge ⊕ NP ⊕ P . The problem with this
solution is that the identity of an attacker P ′ might only
differ in a few bits from P . Then challenge ⊕ NP ⊕ P
agrees with challenge ⊕ NP ⊕ P ′ on all other bits and
the adversary only has to guess the remaining few bits in
challenge⊕NP ⊕P ′ and overshadow them in P ’s response.
After learning challenge and NP , the dishonest prover can
check if his guesses were right and send the final signature.
If the Hamming distance between P and P ′ is k, then the
attacker has to guess k bits and his success probability is
therefore ( 12 )

k.

Example 4 (Flawed fix: secure channels). A second fix is
to perform the setup and finalizing phases over some secure
channel, e. g., by using SSL/TLS, mutually authenticated
using client and server certificates. A protocol along these
lines is described in [16]. Because an attacker now cannot
eavesdrop (or change) the contents of the communication,
it might seem that any hijacking is thwarted. However, as
depicted in Figure 8, such protocols are still vulnerable to
Distance Hijacking. In the attack, P claims to be a verifier
when communicating with P ′, and P claims to be a prover
when communicating with V . Thus, P ′ assumes that he
is proving his distance to P , and therefore transmits his
commit over the secure channel to P . P simply forwards
this commit to V . Because the distance measurement phase
is not protected by the secure channel, P ′ will respond to
V ’s challenge. Afterwards, P ′ will finalize his part over the
secure channel with P . P re-signs this information and sends
it to V over the secure channel.
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Dishonest prover

P

Honest prover

P ′

Verifier

V

Generate β

commit(β)

commit(β)

Generate α

α

α⊕ β

Distance measurement phase

signP ′(V, α, β)

signP (V, α, β)

msc Attack on Brands and Chaum variant with secure channels

Figure 8. Attack on Brands and Chaum variant where setup and finalization
use a secure channel. We use dashed arrows to denote transmission over a
secure channel. P ′ assumes that P is a verifier.

As shown by the examples, it is not trivial to make proto-

cols resilient against Distance Hijacking. The solution is to

make the prover’s messages during the distance measurement

phase distinguishable from those of other provers, such that

a verifier will not mistake the response of one prover (say,

P ′) for the response of another (say, P ). We discuss two

possible solutions: explicit linking and implicit linking.

Solution family 1: Explicit linking: The first solution, ex-
plicit linking, ensures that the response from different provers

is distinguishable by explicitly including identity information

in the response, combined with integrity protection. Example

instances of explicit linking are the following, where we

assume that NP is a nonce generated by the prover which

he commits to in the setup phase.

• challenge ⊕ h(P,NP), where h is a hash function.

• challenge ⊕ signP (NP).
• challenge ⊕MAC k(P,V )(P,NP), where k(P, V ) is a

symmetric shared key between P and V .

Solution family 2: Implicit linking: The second solution

type, implicit linking, does not make the responses of different

provers distinguishable on their own. Rather, it relies on the

fact that honest provers do not reveal some secret, typically

their own nonce NP , before the distance measurement phase

has been completed. Thus, before this phase, only the prover

who generated NP knows the secret and can use it to

construct messages. In protocols that commit to a (temporary)

secret in the setup phase, the prover can include his identity

in the commit, hence sending commit(P,NP) before the

distance measurement phase. Until the prover P releases this

nonce during or after his response, other (dishonest) provers

cannot commit to NP with their own identity. Thus, the

verifier can check that the claimed identity for the distance

measurement phase corresponds to the commit he received

during the setup phase.

V. FORMAL ANALYSIS

Previous formal models capture Distance Hijacking to

an insufficient extent. Specifically, they do not capture

overshadowing parts of a message (see [22]), e. g., by sending

bits using a stronger signal. Several of our Distance Hijacking

attacks involve such overshadowing. To capture these attacks,

we extend the formal framework of Basin et al. [3] to

allow the attacker to perform message manipulation on the

wireless channel by overshadowing parts of a message, as

well as flipping some bits of a message. The resulting new

framework allows to formally prove the absence all of the

previously described Distance Hijacking attacks. A complete

Isabelle/HOL formalization of all definitions and proofs in

this section is available in [26].
In Section V-A, we recall the basic model from [3] and

we present its extension in Section V-B.

A. Basic model
Agents and Environment: We assume that there are

countably infinite disjoint sets Honest and Dishonest of

honest and dishonest agents. We define the set of all agents as

Agent = Honest∪Dishonest. We use A, B, P , V for agents.

We associate a location locA ∈ R
3 to each agent. Based

on the location, we define the line-of-sight communication

distance between two agents A and B as

cdistLoS(A,B) =
|locA − locB |

c
where c denotes the speed of light. This distance constitutes

a lower bound on the time required for a signal to travel

from A to B derived from the locations of both agents.
Messages: We assume that there is a countably infinite

set Const of constants. We assume that there are countably

infinite disjoint sets NonceA for each agent A and define

Nonce =
⋃

A∈Agent NonceA. We assume that there is a count-

ably infinite set Key of keys that is partitioned into keys for

symmetric encryption and asymmetric encryption/signatures.

We assume that there is an inverse operator ·−1 on Key that is

the identity on symmetric keys. The set of syntactic messages
SMsg is defined by the grammar

M,M ′ ::= atom | 〈M,M ′〉 | h(M) | {M}k | M ⊕M ′ | 0
where atom ∈ Agent ∪ Const ∪ Key ∪ Nonce is an atomic

message, and the remaining cases denote pairing, hashing,

encryption with k ∈ Key, exclusive-or, and the all-zero

message. We write signA(M) as a shorthand for {M}sk(A).
We define the set Msg of messages as SMsg/=E , where

=E is the equational theory generated by the set of equations

E = {M ⊕ 0 = M,M ⊕M = 0,

(M ⊕M ′)⊕M ′′ = M ⊕ (M ′ ⊕M ′′),
M ⊕M ′ = M ′ ⊕M}.

In the following, we abuse notation and write M to denote

the corresponding equivalence class {M ′ | M ′ =E M} ∈
Msg.
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M ∈ IKA

M ∈ DMA(tr)
(t,RecvA(M)) ∈ tr
M ∈ DMA(tr)

M ∈ DMA(tr) M ′ ∈ DMA(tr)
M ⊕M ′ ∈ DMA(tr)

M ∈ DMA(tr) M ′ ∈ DMA(tr)
〈M,M ′〉 ∈ DMA(tr)

M ∈ DMA(tr)
h(M) ∈ DMA(tr)

M ∈ DMA(tr) k ∈ DMA(tr)
{M}k ∈ DMA(tr)

〈M1,M2〉 ∈ DMA(tr)
Mi ∈ DMA(tr)

{M}k ∈ DMA(tr) k−1 ∈ DMA(tr)
M ∈ DMA(tr)

Figure 9. Rules defining DMA(tr).

Events and Traces: The set of events is defined as

EV ::= SendA(M)[M∗] | RecvA(M) | ClaimA(M).

For Send, A denotes the agent executing the send, M the

sent message, and M∗ is a sequence of messages denoting

local state information associated with the event. For Recv, A
denotes the agent executing the receive and M the received

message. For Claim, A denotes the agent making the claim

and M the claim itself. A trace tr is a sequence of timed

events (t, EV ) with t ∈ R.

Initial knowledge: To model initial key distributions,

we define the functions pk : Agent → Key, sk : Agent → Key,

and K : Agent × Agent → Key that denote the public, secret,

and shared keys of agents with the expected properties, e. g.,

pk(A)−1 = sk(A) and K(A,B) = K(B,A). We define the

initial knowledge of an agent A as

IKA = Agent ∪ Const ∪ NonceA ∪ {0}
∪ {sk(A)} ∪ {pk(B) | B ∈ Agent}
∪ {K(A,B) | B ∈ Agent}.

Message deduction: Let A be an agent and let tr be

a trace. Then the set DMA(tr) of deducible messages is

the least set closed under the rules in Figure 9. The rules

model message manipulations under the perfect cryptography

assumption, and are all considered modulo E.

Network and Attacker: The set of possible traces TR for

the basic model is defined as the least set closed under the

START-rule, the attacker rule INTR, and the basic network

rule BASICNET2 given in Figure 10 and the rules formalizing

the analyzed protocol. For an example of protocol rules, see

Figure 12. All rules have the implicit side condition that

timestamps are monotonous, i. e., the timestamp of a newly

2Note that this rule is called NET in [3].

ε ∈ TR
NIL

tr ∈ TR I ∈ Dishonest M ∈ DMI(tr)
tr · (t, SendI(M)[]) ∈ TRP

INTR

tr ∈ TR (t′, SendA(M)[L]) ∈ tr
t ≥ t′ + cdistLoS(A,B)

tr · (t,RecvB(M)) ∈ TRP

BASICNET

Figure 10. Rules for network and attacker from the basic model.

tr ∈ TR

∀X ∈ components(M).

∃ t′ A L M ′ Y ∈ components(M ′).
(t′, SendA(M

′)[L]) ∈ tr

∧X ⊕ Y ∈ LHW

∧ t ≥ t′ + cdistLoS(A,B)

tr · (t,RecvB(M)) ∈ TRP

EXTNET

Figure 11. The new network rule for the extended model.

added event cannot be smaller than the maximal timestamp

in the trace. The INTR rule allows dishonest agents to send

arbitrary deducible messages. The BASICNET rule formalizes

that if there is a message M that has been sent by an agent

A, then B can receive the message at time t if t ≥ t′ +
cdistLoS(A,B).

Given a set of traces of a protocol for a model, we can

define when a protocol is secure.

Definition 5. A distance bounding protocol is secure if all
claims (V, P, dist) that occur in traces of the protocol are
valid, i. e., they agree with locV and locP . Here, we account
for the fact that we allow dishonest nodes to share key
material and therefore identify all dishonest agents, i. e., a
claim (V, P, dist) for dishonest P is valid if there is some
dishonest P ′ such that dist is an upper bound on the distance
between V and P ′.

B. Extended model

The network rule BASICNET from [3] does not account

for message manipulation on the wireless channel. As a

result, several attacks from the previous sections (e. g., the

attack in Example 3) cannot be reproduced in the basic

model. We define our extended model by replacing the

network rule BASICNET by a new rule EXTNET, shown

in Figure 11, that allows for a more fine-grained model of

message manipulation.

We start from the observation that the BASICNET rule

does not account for the ability of an attacker to overshadow

parts of a message. Overshadowing can be used to replace
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components in pairs with known messages or to transform

an (unknown) message M into an (unknown) message M ′

if M and M ′ differ only in a few bits.

In the context of a model where signals traverse distances,

as required for modeling distance bounding protocols, an

attacker that is far from a receiver (e. g., the verifier) may

want to use overshadowing to modify the message M of a

sender (e. g., the prover) that is close to the intended recipient

into a message M ′. Let t be the time at which the sender

sends the message M . Because the attacker is further away,

the attacker needs to send the overshadowing bits (M ⊕M ′)
at time t′, where t′ < t, to ensure that they arrive at the

same time at the receiver. If the attacker knows the (parts of

the) message that he wants the recipient to receive, this is

straightforward. However, if the attacker does not know the

message M yet at time t′ and requires the message M to

compute M ′, he needs to guess the positions where M and

M ′ differ, then guess the bits of M ′ on these positions, and

finally overshadow M on these positions with the guessed

bits. We assume that guessing many of the bits of M correctly

can only be done with negligible probability. Subsequently,

the attacker can transform M into M ′ with non-negligible

probability if and only if the Hamming distance between M
and M ′ is small.

To account for these manipulations, we require two

definitions. First, the components of a message M are defined

as components(M) = components(M1) ∪ components(M2)
if M = 〈M1,M2〉 and components(M) = {M} otherwise.

Second, the set LHW of messages that may have a low

Hamming weight is defined as

L,L′ ::= latom | L⊕ L′ | 0
where latom = Agent ∪ Const. This excludes nonces, keys,

hashes, encryptions, and the exclusive-or of such messages

since the probability that these have a low Hamming weight

can be assumed to be negligible, unless such a message

cancels itself out. We do not include pairs of low Hamming

weight messages since we already allow the attacker to

modify components of pairs individually.

Our new network rule EXTNET is shown in Figure 11.

According to the rule, an agent B can receive a message M
if for all components X of M , there is a corresponding send

event (with compatible timestamp) of a message M ′ such

that M ′ has a component Y with a low Hamming distance

to X , i. e., the Hamming weight of X ⊕ Y is low.

Example 5. We assume that the attacker does not know
NV and NP . To overshadow NP with NI in the message
〈NV ,NP〉 sent by an honest P , the attacker has to send
NI (early enough) such that both sends together result in a
receive of 〈NV ,NI〉.

In Example 3, the attacker overshadows some bits to
transform the (unknown) message NV ⊕ NP ⊕ P into the
(unknown) message NV ⊕ NP ⊕ P ′. In our model, the

tr ∈ TR P ∈ Honest
NP ∈ (NonceP \ subterms(tr))

tr · (t, SendP (h(NP))[P1,NP ]) ∈ TR
PROVCOM

tr ∈ TR V ∈ Honest
(t,RecvV (COM )) ∈ tr

NV ∈ (NonceV \ subterms(tr))
tr · (t, SendV (NV )[V1,COM ,NV ]) ∈ TR

VERCHAL

tr ∈ TR P ∈ Honest (t,RecvP (NV )) ∈ tr
(t, SendP (X)[P1,NP ]) ∈ tr

tr · (t, SendP (NV ⊕NP )[P2,NP ,NV ]) ∈ TR
PROVRESP

tr ∈ TR P ∈ Honest
(t, SendP (X)[P2,NP ,NV ]) ∈ tr

tr · (t, SendP (signP (NV ,NP , P ))[]) ∈ TR
PROVAUTH

tr ∈ TR V ∈ Honest
(tchal , SendV (NV )[V1, h(NP),NV ]) ∈ tr

(tresp ,RecvV (NV ⊕ NP)) ∈ tr
(tauth ,RecvV (signP (NV ,NP , P ))) ∈ tr

tr · (t,ClaimV (V, P, (tresp − tchal) ∗ c/2)) ∈ TR
VERRESP

Figure 12. Formalization of the Brands-Chaum Protocol.

attacker does not have to perform any action since (NV ⊕
NP ⊕ P ′) ⊕ (NV ⊕ NP ⊕ P ) = P ⊕ P ′ ∈ LHW. This
captures the intuition that allowing the attacker to flip some
bits of unknown messages is equivalent to allowing for some
bit-errors introduced by the wireless channel.

The set of possible traces TR for our extended model is

defined as the least set closed under the START-rule, the

attacker rule INTR, the extended network rule EXTNET, and

the rules formalizing the analyzed protocol.

Protocol Formalization: We formalize the original

signature-based version of the Brands-Chaum by the rules

in Figure 12. Pi and Vi are constants used in the local

state of the verifier and prover in step i. The rules ensure

that the previous steps have been executed, the required

messages have been received, and nonces are freshly chosen

(not subterm of the trace tr). The final rule VERRESP uses

the times when the challenge was sent and the time when the

reply was received to compute an upper bound on the distance

between P and V . We refer the reader to [3] to further details

on modeling protocols in this kind of framework.

Case studies: We have analyzed the Brands-Chaum

protocol and its various fixes in our extended framework. For

example, we have proven that if we modify Brands-Chaum

to include explicit linking, the Distance Hijacking attack is

no longer possible. Note that for proving the correctness of

the version with implicit linking, we need the assumption
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that verifiers cannot receive the bits/message that they

sent themselves, e. g., because different channels are used.

Without this assumption, Brands-Chaum is vulnerable to

Distance Fraud attacks (by reflection or using low Hamming

weight overshadowing). As another example, our extended

framework also reveals that modifying the response to

NV ⊕NP⊕P is not secure since the attack from Example 3

is captured. Note that in the basic framework from [3], which

did not account for message manipulation on the wireless

channel, this attack was not captured and a security proof

was possible. This clearly shows the effect of the adversary’s

additional powers in our extended model.

For a complete description of our case studies and their

formalization we refer the reader to [26].

VI. MULTI-PROTOCOL ENVIRONMENTS

So far, we discussed Distance Hijacking attacks in single-
protocol environments, where both dishonest and honest

prover run the same distance bounding protocol. However, it

is possible that verifier-prover pairs execute different ranging

and distance bounding protocols, for example when they

belong to different domains. We call such environments

multi-protocol environments.

Distance Hijacking in Multi-protocol Environments: In

what follows we show that there are plausible multi-protocol

environments in which protocols that are resilient to Distance

Hijacking in single-protocol environments become vulnerable

again to Distance Hijacking.

We define a multi-protocol environment MPE as a set

of triplets, where a triplet (A,B,R) denotes that agent A
may execute the protocol role R (e. g., the prover role of

the Brands and Chaum protocol) when communicating with

B, and where at least two different protocols are contained

in the set. We say that a distance bounding protocol DB is

vulnerable to a Distance Hijacking Attack in a multi-protocol

environment MPE if a dishonest prover P can perform a

successful Distance Hijacking attack against a verifier V
running DB in the verifier role in that environment (and

hence (V, P,DB(verifier)) ∈ MPE ).

It is easy to see that, given any distance bounding protocol,

a multi-protocol environment can be constructed in which this

protocol will be vulnerable to Distance Hijacking attacks. For

example, all distance bounding protocols will be vulnerable

to Distance Hijacking if run in the same environment with

a protocol that uses a similar distance measurement phase,

but that gives a dishonest prover full control over the way

the response bits are computed by the honest prover. This

is not such an unlikely scenario, since it is plausible that in

the same environment in which a verifier and a dishonest

prover run e. g., Hancke and Kuhn, an honest prover runs

an insecure ranging protocol that supports the same type

of distance measurement phase as the Hancke and Kuhn

protocol. This insecure ranging protocol could easily allow

a dishonest prover to set the bits that the honest prover

Prover

P

Verifier

V

NP0, NP1 ∈R {0, 1}
�

V, {NP0, NP1, V }kvp

NV ∈R {0, 1}
�

N i

V

if N i

V
= 0,Ri = N i

P0

if N i

V
= 1,Ri = N i

P1
Ri

Rapid bit exchange for i = 1 to l

Verify that received Ri’s
correspond to NP0 and NP1

msc Distance bounding protocol

Figure 13. A Distance Bounding Protocol that enables Distance Hijacking
on Hancke-Kuhn protocol in multi-protocol environments.

uses in the distance measurement phase (e. g., for debugging

purposes). It might also be that this insecure ranging protocol

is simply enabled as a feature for non-critical applications

and therefore coexists with the Hancke and Kuhn protocol

on the devices (and thus shares the same hardware / distance

measurement implementation with the Hancke and Kuhn

protocol). This means that no multi-prover distance bounding

protocol deployments can be guaranteed to be secure unless

additional measures are in place.

In the above example we used an insecure protocol. How-

ever, similar attacks are possible using only protocols that

are secure in single-protocol environments. We show this on

an example of the Hancke-Kuhn distance bounding protocol

from [12]. We construct a multi-protocol environment in

which the verifier runs the Hancke-Kuhn protocol, and the

honest provers support a minor variation of the Hancke-

Kuhn protocol that is secure against Distance Hijacking

in a single-protocol environment. This protocol, shown in

Figure 13, differs from the Hancke and Kuhn protocol in

that the prover does not compute the values of registers NP0

and NP1 but that these are computed by the verifier and

sent (confidentially) to the prover. This protocol modification

would make sense if one would, e. g., assume that the prover

does not have a good random number generator (e. g., an

RFID tag).

A Distance Hijacking attack in this environment works as

follows. A dishonest prover P initiates the original Hancke

and Kuhn protocol with the verifier V , and derives shared
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register values with V (for details see Hancke and Kuhn

protocol [12]). P then acts as a verifier and initiates the

modified Hancke and Kuhn protocol from Figure 13 with the

honest prover P ′. P then provides the register values to P ′

as specified in the modified protocol. V and P ′ then execute

a rapid bit exchange and V believes that this exchange was

executed by P .

Observe that the attack does not require the two protocols

to share the same long-term keys: V verifies the use of the

key as prescribed by the Hancke and Kuhn protocol, which

was provided by P , and remains unknown to P ′. However,

the attack strictly requires V and P ′ to use similar hardware

for the fast response phase.

Similarly, a modified version of the Brands and Chaum

protocol can be constructed that, if run next to the Hancke and

Kuhn protocol, would also enable a Distance Hijacking attack

against the Hancke and Kuhn protocol. This phenomenon

is similar to the Chosen Protocol attack in cryptographic

protocol analysis. We relate the two concepts in Section VIII.

Protecting against Distance Hijacking in Multi-Protocol
Environments: Previously, we proposed countermeasures that

prevent Distance Hijacking in single-protocol environments.

We now discuss some approaches that can mitigate such

attacks in multi-protocol environments.

For multi-protocol environments the obvious solution is to

try to ensure that all protocols in an environment use different

(incompatible) hardware for their distance measurement

phase. This is analoguous to the concepts of tagging or

disjoint encryption for classical cryptographic protocols. Thus,

attacks in multi-protocol environments can be prevented by

better regulation in distance bounding protocol deployment

and construction. Minor application-specific modifications to

the distance measurement phase (e. g., including application-

specific dummy bits) would already prevent a number

of attacks. Similarly, manufacturer-specific or deployment

specific hardware modifications would also protect against

multi-protocol attacks; this can, however, be expensive.

There are a number of scenarios in which such deploy-

ment and regulatory protection measures cannot be used.

Application-specific modifications of the distance measure-

ment phase are particularly difficult to implement; given the

tight timing constraints in the distance measurement phase,

this phase will be processed in hardware. It is also likely

that only a few implementations of the distance measurement

phase will emerge in the future, limiting available application-

specific modifications of this phase. This finally means that

most distance bounding protocols will likely use the same

implementation of the distance measurement phase.

Accounting for these scenarios, we propose an alternative

solution that makes use of “prover honeypots”. Recall that to

execute a Distance Hijacking attack, a dishonest prover either

needs to be able to successfully claim to have executed a

distance measurement phase that was executed by an honest

prover, or needs to make an honest prover execute a distance

measurement phase using specific bits. The prevention of

the false distance measurement claim naturally extends from

single- to multi-protocol environments — this type of attack

can be prevented by using protocols that are resilient to

Distance Hijacking in single-protocol environments. However,

as we have shown, protocols that are resilient to Distance

Hijacking in single-protocol environments cannot prevent

attacks in a multi-protocol environment where an honest

prover is made to execute a distance measurement phase

using the bits provided by a dishonest prover. We aim to

detect such attacks by the use of prover honeypots.

Our solution works as follows. The verifier first sets up a

number of virtual or real honeypot provers which are either

physical or virtual devices that are placed in the vicinity of

the verifier. These honeypot provers are created either by the

verifier or by the devices that the verifier trusts and controls.

To other provers, honeypot provers claim either their true

or false locations/identities, and they support a broad set of

ranging and distance bounding protocols. The idea behind

this setting is that when a dishonest prover mounts a Distance

Hijacking attack, it chooses one of the honeypot provers to

abuse in his attack. Besides setting up honeypot provers, the

verifier also limits its operation to specific distance bounding

protocols: it executes only distance bounding protocols that

force a dishonest prover to reveal (most of the bits of) its

secret key (that it shares with the verifier) to the honest prover

if he wants to execute a Distance Hijacking attack. This is

commonly the case for protocols that are resilient against

Terrorist Fraud. Thus, if a dishonest prover exploits one of

the honeypots in a Distance Hijacking attack, the (majority

of the) bits of the key that it shares with the verifier will

be revealed to the honeypot prover. For the case in which

the prover wants to be certain about the success of Distance

Hijacking, all of the bits of his key will be revealed to the

honeypot. In order to check if a Distance Hijacking attack

was executed, the verifier, after the execution of a distance

bounding protocol with a given prover, simply needs to ask

his honeypot provers to send him the bits that they used in

any recent distance measurement phase. If those bits allow

the reconstruction of the (majority of the bits of the) key that

the verifier shares with the prover [14], the verifier concludes

that the prover attempted to execute a Distance Hijacking

attack.

VII. LOCATION HIJACKING

In this section we generalize Distance Hijacking to

Location Hijacking. We consider the problem of location

verification, or position verification, in which a set of verifiers

establishes the location of a prover, even though this prover

may act dishonestly, i. e., the prover can pretend to be at

another location than he really is. The objective of a location

verification protocol is to ensure that the location of the

prover is reliably determined. Such protocols often build

on distance bounding protocols. A prover repeatedly uses a
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Figure 14. Location Verification
and Location Hijacking: P hijacks
the location of P ′, for example by
hijacking the distance bounding pro-
tocol instances of P ′ with respect to
the verifiers.

Figure 15. Location Hijacking to
empty location: When asked to prove
his location to the verifiers, P hijacks
P1’s distance for V1, P2’s distance
for V2, and P3’s distance for V3. The
verifiers conclude that P is at the
location indicated by the arrow.

distance bounding protocol to prove his proximity to a set of

verifiers. Based on the combined information, the verifiers

are able to verify the location of the prover.

This process is depicted in Figure 14. The circles represent

the measured distances by the verifiers V1, V2, V3, and they

conclude that P ′ must be located in the intersection. If a

dishonest prover P can hijack distance bounding sessions of

a party P ′, he can pretend to be at the location where P ′

resides, regardless of his actual location. This constitutes a

Location Hijacking attack: a dishonest prover can hijack the

location of P ′.

Definition 6. Location Hijacking attack. A Location Hi-
jacking attack is an attack in which a dishonest prover P
exploits one or more honest parties P1, . . . , Pn to provide a
set of verifiers V1, . . . , Vk with false information about the
location of P (either absolute or relative to the location of
the verifiers).

The threat of hijacking is magnified in the context of

location verification, because multiple distance bounding

results are combined. For example, consider the setup in

Figure 15, in which three honest provers P1, P2, and P3 are

within range of the verifiers. As before, a dishonest prover can

perform Distance Hijacking attacks on the distance bounding

phases, thereby hijacking the location of P1, P2, or P3 as he

chooses. However, he can also combine Distance Hijacking

attacks with respect to multiple honest provers: this allows

him to make his location appear to be at any intersection

of the distances of a set of honest provers. For example, in

Figure 15, he can convince the verifiers that he is located

at the position indicated by the arrow, by combining the

distance bounding phases of the honest provers, even though

nobody is present at this location.

Case Study of Location Hijacking: To emphasize that

Location Hijacking is indeed a relevant problem, even on

recent protocols, we give a brief case study of a recent

protocol by Chiang et al. [6] that is vulnerable to Location

Hijacking. In this protocol a prover sends out a location

claim, after which he receives simultaneous challenges from

a number of verifiers. The prover aggregates the challenges

and broadcasts his response to all verifiers. This many-to-

one challenge response then constitutes one round of the

underlying distance bounding protocol, which in this case

is Brands and Chaum’s original suggestion [4]. The authors

present a proof that their scheme is optimal in the sense that

it achieves the “maximal security” any location verification

schemes based solely on time-of-flight can provide.

Despite the proof, this scheme is vulnerable to Location

Hijacking (Figure 14). The proof in [6] establishes that a

prover must be at the claimed location (within some accuracy)

in order to correctly reply to the challenges. The proof

however, does not address the authentication of the node at the

claimed location but instead leaves that up to the underlying

distance bounding protocol. Since the underlying distance

bounding protocol is vulnerable to Distance Hijacking, the

location verification protocol inherits this vulnerability. In

this case it is possible that another distance bounding protocol

could be used instead of Brands and Chaum, in order to

achieve a secure scheme, but this example shows that even

recent location verification schemes with proofs of optimal

security, can be vulnerable to Location Hijacking.

VIII. RELATED WORK

Distance bounding for RFID tags: Avoine et al. present

in [1] a framework for analyzing RFID distance bounding

protocols. They give definitions for the three main attack

types, and also define Impersonation Fraud, in which “a

lonely prover purports to be another one” [1, p. 5], i. e., a

violation of weak authentication. They consider these four

types of attack with respect to black-box and white-box

provers, yielding a total of eight security notions. None of

their models covers Distance Hijacking attacks.

Dürholz et al. propose in [10] the first computational

formal framework for proving properties of RFID distance

bounding protocols that are based on shared symmetric keys.

Their framework considers an attacker that interacts only

with a single prover (the tag) and single verifier (the reader).

Consequently, proving that an RFID protocol is secure in

their framework does not guarantee the absence of Distance

Hijacking attacks.

Formal models for distance bounding: Meadows et al.

developed a formal methodology to prove properties of

distance bounding protocols [18]. Because the methodology

is not particularly suited for dealing with dishonest provers,

they did not consider scenarios that would allow them to

detect Distance Hijacking attacks.

The first two formal approaches for distance bounding

protocols that have considered multi-prover scenarios and

dishonest provers are Malladi et al. [25] and Basin et al.

[3]. Malladi et al. propose a tool-supported framework for

analyzing distance bounding protocols, and model a variant

of the first signature-based protocol by Brands and Chaum.

They analyze this protocol in several scenarios and find an

125



attack that falls into our class. In their “farther adversary”

scenario, the attacker is farther from the verifier than the

reported distance. This suggests that the “farther adversary”

scenario covers both Distance Fraud and Distance Hijacking.

However, this observation is not consistent with Malladi

et al.’s statement that including the identity in the signature

makes the protocol secure in the “farther adversary” scenario.

From our analysis it is clear that the resulting protocol will

still be vulnerable to Distance Hijacking.

Basin et al. proposed in [3] the basic framework that we

have used here as a starting point for our extended model.

Basin et al. analyze a family of distance bounding protocols

proposed by Meadows et al. in [18] and find an attack that

falls into our class of Distance Hijacking attacks, which

they refer to as an “impersonation attack”. They prove that

a concatenation-based version of the protocol is secure in

their framework. This protocol is not secure in our extended

framework, as the protocol is still vulnerable to a Distance

Hijacking attack that uses overshadowing.

Chosen Protocol attack: The multi-protocol Distance

Hijacking attack described in Section VI resembles the

Chosen Protocol (or Multi-Protocol) attack in cryptographic

protocol analysis, which was introduced by Kelsey, Schneier,

and Wagner [13]. They describe how, given any secure

cryptographic protocol, a second protocol can be constructed

(“chosen”) that is also secure, but when both are executed

in parallel, an attacker can use the second protocol to attack

the first. Chosen Protocol attacks are an instance of Multi-

Protocol attacks [7]. In a traditional (Dolev-Yao style) setting,

Multi-Protocol attacks require that both protocols use the

same key infrastructure, in which case many protocols are

vulnerable [7]. Ensuring that the protocols use different keys

prevents the problem [11], which is often guaranteed in

practice. The practical threat of multi-protocol attacks in the

Dolev-Yao setting is therefore limited.

In contrast, our multi-protocol Distance Hijacking attacks

do not require that keys are shared among protocols. Rather,

the distance measurement phase must be regarded as a

security primitive, and care must be taken when security

primitives are shared among protocols. If not, unexpected

interactions can occur, as witnessed by our attacks. In practice,

multi-protocol Distance Hijacking poses a more significant

threat than Chosen Protocol attacks, because it can be

expected that only a few different hardware components

for distance measurement will be manufactured, which may

be used by a large number of different protocols.

IX. CONCLUSIONS

In many practical scenarios, including scenarios in which

Terrorist Fraud attacks are not a concern, Distance Hijacking

attacks can pose a serious threat. Surprisingly, until now, this

type of attack was not considered in the analysis of proposed

distance bounding protocols.

In fact, our analysis shows that many distance bounding

protocols cannot be safely used in scenarios with multiple

provers. Fortunately, it seems that adapting the protocols to be

resilient against these attacks is possible in single-protocol en-

vironments without imposing a significant overhead. Similar

observations can be made for location verification protocols

with respect to Location Hijacking attacks.

We introduced an extended framework to reason about

distance bounding protocols in a symbolic way, which at

the same time incorporates bit-level message manipulations

by the attacker. The results of this hybrid approach have

thus far been promising. The framework enables us to detect

more attacks than previous frameworks, including Distance

Hijacking attacks, and also allows us to prove the absence

of the attacks we found.

We proposed an exhaustive classification of attacks on

distance bounding protocols. In this context, we also proposed

new names and definitions for the three classical attack types.

Our new attack names are less generic and more descriptive

than the previous names. We hope that the exhaustive

classification has a positive effect on the systematic analysis

of threats against distance bounding protocols.

It is clear that secure functioning in a context with multiple

provers is a desirable feature, giving an edge to those

protocols that are resilient against Distance Hijacking attacks.

It seems therefore prudent to analyze new proposals for

distance bounding protocols for their vulnerability to Distance

Hijacking.
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